| [1] | Leith, E. N. & Upatnieks, J. Wavefront reconstruction with diffused illumination and threedimensional objects. Journal of the Optical Society of America 54, 1295-1301 (1964). doi: 10.1364/JOSA.54.001295 | 
| [2] | Powell, R. L. & Stetson, K. A. Interferometric vibration analysis by wavefront reconstruction. Journal of the Optical Society of America 55, 1593-1598 (1965). doi: 10.1364/JOSA.55.001593 | 
| [3] | Offner, A. A null corrector for paraboloidal mirrors. Applied Optics 2, 153-155 (1963). doi: 10.1364/AO.2.000153 | 
| [4] | Lohmann, A. W. & Paris, D. P. Binary fraunhofer holograms, generated by computer. Applied Optics 6, 1739-1748 (1967). doi: 10.1364/AO.6.001739 | 
| [5] | Zhang, T. & Yamaguchi, I. Three-dimensional microscopy with phase-shifting digital holography. Optics Letters 23, 1221-1223 (1998). doi: 10.1364/OL.23.001221 | 
| [6] | Kim, M. K. Principles and techniques of digital holographic microscopy. SPIE Reviews 1, 018005 (2010). | 
| [7] | Kemper, B., Langehanenberg, P. & von Bally, G. Digital holographic microscopy. Optik & Photonik 2, 41-44 (2007). | 
| [8] | Häusler, G. & Ettl, S. Limitations of optical 3D sensors. in Optical Measurement of Surface Topography (ed Leach, R.) (Berlin Heidelberg: Springer, 2011), 23-48. | 
| [9] | Häusler, G. Discover better optical sensors - by exploring and exploiting nature’s limits. Computational Optical Sensing and Imaging 2019. Munich, Germany: Optical Society of America, 2019, CTh2A.1. | 
| [10] | Dresel, T., Häusler, G. & Venzke, H. Three-dimensional sensing of rough surfaces by coherence radar. Applied Optics 31, 919-925 (1992). doi: 10.1364/AO.31.000919 | 
| [11] | Su, R. Coherence scanning interferometry. in Advances in Optical Surface Texture Metrology (ed Leach, R)(Bristol: IOP Publishing, 2020), 2-1-2-27. | 
| [12] | Epzcaw. https://commons.wikimedia.org/wiki/File:Holographic_recording.jpg (2021). | 
| [13] | Srinivasan, V., Liu, H. C. & Halioua, M. Automated phase-measuring profilometry of 3-D diffuse objects. Applied Optics 23, 3105-3108 (1984). doi: 10.1364/AO.23.003105 | 
| [14] | Takeda, M. & Mutoh, K. Fourier transform profilometry for the automatic measurement of 3-D object shapes. Applied Optics 22, 3977-3982 (1983). doi: 10.1364/AO.22.003977 | 
| [15] | Willomitzer, F. & Häusler, G. Single-shot 3D motion picture camera with a dense point cloud. Optics Express 25, 23451-23464 (2017). doi: 10.1364/OE.25.023451 | 
| [16] | Huber, F. et al. 3D body scanning with “flying triangulation”.Proceedings of 112th DGaO Conference; 30, (2011). | 
| [17] | Takeda, M., Ina, H. & Kobayashi, S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. Journal of the Optical Society of America 72, 156-160 (1982). doi: 10.1364/JOSA.72.000156 | 
| [18] | Häusler, G. et al. Why can’t we purchase a perfect single shot 3d-sensor? Proceedings of 113th DGaO Conference; A8, (2012). | 
| [19] | Bruning, J. H. et al. Digital wavefront measuring interferometer for testing optical surfaces and lenses. Applied Optics 13, 2693-2703 (1974). doi: 10.1364/AO.13.002693 | 
| [20] | Willomitzer, F. Single-Shot 3D Sensing Close to Physical Limits and Information Limits. (Berlin Heidelberg: Springer, 2019). | 
| [21] | Willomitzer, F. et al. Single-shot three-dimensional sensing with improved data density. Applied Optics 54, 408-417 (2015). doi: 10.1364/AO.54.000408 | 
| [22] | Cheng, Y. Y. & Wyant, J. C. Two-wavelength phase shifting interferometry. Applied Optics 23, 4539-4543 (1984). doi: 10.1364/AO.23.004539 | 
| [23] | Falaggis, K., Towers, D. P. & Towers, C. E. Method of excess fractions with application to absolute distance metrology: theoretical analysis. Applied Optics 50, 5484-5498 (2011). doi: 10.1364/AO.50.005484 | 
| [24] | Häusler, G. Speckle and coherence. in Encyclopedia of Modern Optics (eds Guenther, B. D. et al) (Oxford: Academic Press, 2004), 114-123. | 
| [25] | Dorsch, R. G., Häusler, G. & Herrmann, J. M. Laser triangulation: fundamental uncertainty in distance measurement. Applied Optics 33, 1306-1314 (1994). doi: 10.1364/AO.33.001306 | 
| [26] | Wagner, C. & Häusler, G. Information theoretical optimization for optical range sensors. Applied Optics 42, 5418-5426 (2003). doi: 10.1364/AO.42.005418 | 
| [27] | Häusler, G. et al. Range sensing based on shearing interferometry. Applied Optics 27, 4638-4644 (1988). doi: 10.1364/AO.27.004638 | 
| [28] | Häusler, G. & Herrmann, J. M. Range sensing by shearing interferometry: influence of speckle. Applied Optics 27, 4631-4637 (1988). doi: 10.1364/AO.27.004631 | 
| [29] | Thorley, J. A., Pike, J. & Rappoport, J. Z. Super-resolution microscopy: a comparison of commercially available options. in Fluorescence Microscopy: Super-Resolution and Other Novel Techniques (eds Cornea, A. & Conn, P. M.) (Amsterdam: Elsevier, 2014), 199-212. | 
| [30] | Spellenberg, B., Herrmann, J. M. & Häusler, G. Highly improved range sensingɃby reduction of spatial coherence. Optik 112, 299-303 (2001). doi: 10.1078/0030-4026-00058 | 
| [31] | Caber, P. J. Interferometric profiler for rough surfaces. Applied Optics 32, 3438-3441 (1993). doi: 10.1364/AO.32.003438 | 
| [32] | Fercher, A. F., Hu, H. Z. & Vry, U. Rough surface interferometry with a two-wavelength heterodyne speckle interferometer. Applied Optics 24, 2181-2188 (1985). doi: 10.1364/AO.24.002181 | 
| [33] | Vry, U. & Fercher, A. F. Higher-order statistical properties of speckle fields and their application to rough-surface interferometry. Journal of the Optical Society of America A 3, 988-1000 (1986). doi: 10.1364/JOSAA.3.000988 | 
| [34] | Dändliker, R., Thalmann, R. & Prongué, D. Two-wavelength laser interferometry using superheterodyne detection. Optics Letters 13, 339-341 (1988). doi: 10.1364/OL.13.000339 | 
| [35] | Willomitzer, F. et al. Fast non-line-of-sight imaging with high-resolution and wide field of view using synthetic wavelength holography. Nature Communications 12, 6647 (2021). doi: 10.1038/s41467-021-26776-w | 
| [36] | Li, F. Q. et al. SH-ToF: micro resolution time-of-flight imaging with superheterodyne interferometry. Proceedings of 2018 IEEE International Conference on Computational Photography (ICCP). Pittsburgh, PA, USA: IEEE, 2018, 1-10. | 
| [37] | Wagner, C., Osten, W. & Seebacher, S. Direct shape measurement by digital wavefront reconstruction and multi-wavelength contouring. Optical Engineering 39, 79-85 (2000). doi: 10.1117/1.602338 | 
| [38] | Willomitzer, F. et al. High resolution non-line-of-sight imaging with superheterodyne remote digital holography. Computational Optical Sensing and Imaging 2019. Munich, Germany: Optical Society of America, 2019, CM2A.2. | 
| [39] | Willomitzer, F. et al. Synthetic wavelength holography: an extension of Gabor’s holographic principle to imaging with scattered Wavefronts. Preprint at https: //arxiv.org/abs/1912.11438 (2019). | 
| [40] | Li, F. Q. et al. Exploiting wavelength diversity for high resolution time-of-flight 3D imaging. IEEE Transactions on Pattern Analysis and Machine Intelligence 43, 2193-2205 (2021). doi: 10.1109/TPAMI.2021.3075156 | 
| [41] | George, N., Jain, A. & Melville, R. D. S. Jr. Experiments on the space and wavelength dependence of speckle. Applied Physics 7, 157-169 (1975). doi: 10.1007/BF00936019 | 
| [42] | Ettl, P. Studien zur hochgenauen Objektvermessung mit dem Kohärenzradar. MSc Thesis, University of Erlangen, Nuremberg, (1995). | 
| [43] | Häusler, G. et al. Limits of optical range sensors and how to exploit them. in International Trends in Optics and Photonics (ed Asakura, T.) (Berlin Heidelberg: Springer, 1999), 328-342. | 
| [44] | Kwon, O., Wyant, J. C. & Hayslett, C. R. Rough surface interferometry at 10.6 μm. Applied Optics 19, 1862-1869 (1980). doi: 10.1364/AO.19.001862 | 
| [45] | Häusler, G. Verfahren und vorrichtung zur ermittlung der form oder der abbildungseigenschaften von spiegelnden oder transparenten objekten. (1999). | 
| [46] | Knauer, M. C., Kaminski, J. & Hausler, G. Phase measuring deflectometry: a new approach to measure specular free-form surfaces. Proceedings of SPIE 5457, Optical Metrology in Production Engineering. Strasbourg, France: SPIE, 2004, 366-376. | 
| [47] | Willomitzer, F. et al. Hand-guided qualitative deflectometry with a mobile device. Optics Express 28, 9027-9038 (2020). doi: 10.1364/OE.383475 | 
| [48] | Bates, W. J. A wavefront shearing interferometer. Proceedings of the Physical Society 59, 940 (1947) | 
| [49] | Häusler, G. et al. Microdeflectometryja novel tool to acquire three-dimensional microtopography with nanometer height resolution. Optics Letters 33, 396-398 (2008). doi: 10.1364/OL.33.000396 | 
| [50] | Peterhänsel, S. et al. Microdeflectometry in transmission. Proceedings of 110th DGaO Conference; 24, (2009). | 
| [51] | Faber, C. et al. Deflectometry challenges interferometry: the competition gets tougher! Proceedings of SPIE 8493, Interferometry XVI: Techniques and Analysis. San Diego: SPIE, 2012, 84930R. | 
| [52] | Ehret, G. et al. Deflectometric systems for absolute flatness measurements at PTB. Measurement Science and Technology 23, 094007 (2012). doi: 10.1088/0957-0233/23/9/094007 | 
| [53] | Hartmann, J. Objektivuntersuchungen. Zeitschrift für Instrumentenkunde 24, 1-21 (1904). | 
| [54] | Servin, M., Malacara, D. & Marroquin, J. L. Wave-front recovery from two orthogonal sheared interferograms. Applied Optics 35, 4343-4348 (1996). doi: 10.1364/AO.35.004343 | 
| [55] | Falldorf, C., von Kopylow, C. & Bergmann, R. B. Wave field sensing by means of computational shear interferometry. Journal of the Optical Society of America A 30, 1905-1912 (2013). | 
| [56] | Nomarski, G. Microinterferometre differentielle a ondes polarisees. J. Phys. Radium 16, 9 (1955). | 
| [57] | Falldorf, C., Agour, M. & Bergmann, R. B. Digital holography and quantitative phase contrast imaging using computational shear interferometry. Optical Engineering 54, 024110 (2015). doi: 10.1117/1.OE.54.2.024110 | 
| [58] | Falldorf, C. et al. Γ-profilometry: a new paradigm for precise optical metrology. Optics Express 29, 36100-36110 (2021). doi: 10.1364/OE.434510 | 
| [59] | Francis, D., Tatam, R. P. & Groves, R. M. Shearography technology and applications: a review. Measurement Science and Technology 21, 102001 (2010). doi: 10.1088/0957-0233/21/10/102001 |