| [1] | Xin, H. B. et al. Optical forces: from fundamental to biological applications. Advanced Materials 32, 2001994 (2020). doi: 10.1002/adma.202001994 |
| [2] | Allen, T. M. & Cullis, P. R. Liposomal drug delivery systems: from concept to clinical applications. Advanced Drug Delivery Reviews 65, 36-48 (2013). doi: 10.1016/j.addr.2012.09.037 |
| [3] | Wang, B. et al. Trends in micro-/nanorobotics: materials development, actuation, localization, and system integration for biomedical applications. Advanced Materials 33, 2002047 (2021). doi: 10.1002/adma.202002047 |
| [4] | Palagi, S. & Fischer, P. Bioinspired microrobots. Nature Reviews Materials 3, 113-124 (2018). doi: 10.1038/s41578-018-0016-9 |
| [5] | Esteban-Fernández De Ávila, B. et al. Hybrid biomembrane-functionalized nanorobots for concurrent removal of pathogenic bacteria and toxins. Science Robotics 3, eaat0485 (2018). doi: 10.1126/scirobotics.aat0485 |
| [6] | Xin, H. B. et al. Optically controlled living micromotors for the manipulation and disruption of biological targets. Nano Letters 20, 7177-7185 (2020). doi: 10.1021/acs.nanolett.0c02501 |
| [7] | Bunea, A. I. et al. Light-powered microrobots: challenges and opportunities for hard and soft responsive microswimmers. Advanced Intelligent Systems 3, 2170041 (2021). doi: 10.1002/aisy.202170041 |
| [8] | Li, D. F. et al. Micro-rocket robot with all-optic actuating and tracking in blood. Light: Science & Applications 9, 84 (2020). |
| [9] | Xiong, J. Y. et al. Light-controlled soft bio-microrobot. Light: Science & Applications 13, 55 (2024). |
| [10] | Li, X. et al. Light-powered phagocytic macrophage microrobot (phagobot): both in vitro and in vivo. Light: Science & Applications 14, 202 (2025). |
| [11] | Han, H. et al. Imaging-guided bioresorbable acoustic hydrogel microrobots. Science Robotics 9, eadp3593 (2024). doi: 10.1126/scirobotics.adp3593 |
| [12] | Xiong, J. Y. et al. Wake-riding effect-inspired opto-hydrodynamic diatombot for non-invasive trapping and removal of nano-biothreats. Advanced Science 10, 2301365 (2023). doi: 10.1002/advs.202301365 |
| [13] | Zhu, G. S. et al. Neural stimulation and modulation with sub-cellular precision by optomechanical bio-dart. Light: Science & Applications 13, 258 (2024). |
| [14] | Yin, S. K. et al. Wearable and implantable soft robots. Chemical Reviews 124, 11585-11636 (2024). doi: 10.1021/acs.chemrev.4c00513 |
| [15] | Liu, X. S. et al. Optically manipulated neutrophils as native microcrafts in vivo. ACS Central Science 8, 1017-1027 (2022). doi: 10.1021/acscentsci.2c00468 |
| [16] | Huang, J. B. et al. Design of light-driven biocompatible and biodegradable microrobots containing Mg-based metallic glass nanowires. ACS Nano 18, 2006-2016 (2024). doi: 10.1021/acsnano.3c08277 |