[1] Stranks, S. D. & Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 10, 391–402 (2015).
[2] Miyasaka, T. et al. Perovskite solar cells: can we go organic-free, lead-free, and dopant-free? Adv. Energy Mater. 10, 1902500 (2020). doi: 10.1002/aenm.201902500
[3] Xiao, Z. W., Song, Z. N. & Yan, Y. F. From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives. Adv. Mater. 31, 1803792 (2019). doi: 10.1002/adma.201803792
[4] Xu, Q. L. et al. Perovskite solar absorbers: materials by design. Small Methods 2, 1700316 (2018). doi: 10.1002/smtd.201700316
[5] Park, N. G. et al. Towards stable and commercially available perovskite solar cells. Nat. Energy 1, 16152 (2016). doi: 10.1038/nenergy.2016.152
[6] Snaith, H. J. Present status and future prospects of perovskite photovoltaics. Nat. Mater. 17, 372–376 (2018). doi: 10.1038/s41563-018-0071-z
[7] Cho, H. et al. Improving the stability of metal halide perovskite materials and light-emitting diodes. Adv. Mater. 30, 1704587 (2018). doi: 10.1002/adma.201704587
[8] Zou, Y. et al. Recent progress toward perovskite light-emitting diodes with enhanced spectral and operational stability. Mater. Today Nano 5, 100028 (2019). doi: 10.1016/j.mtnano.2019.100028
[9] Domanski, K. et al. Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells. Nat. Energy 3, 61–67 (2018). doi: 10.1038/s41560-017-0060-5
[10] Boyd, C. C. et al. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 119, 3418–3451 (2019). doi: 10.1021/acs.chemrev.8b00336
[11] Liu, K. K. et al. Water-induced MAPbBr3@PbBr(OH) with enhanced luminescence and stability. Light. Sci. Appl. 9, 44 (2020). doi: 10.1038/s41377-020-0283-2