[1] Yu, N. F. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333-337 (2011). doi: 10.1126/science.1210713
[2] Yu, N. F. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139-150 (2014). doi: 10.1038/nmat3839
[3] Walther, B. et al. Spatial and spectral light shaping with metamaterials. Adv. Mater. 24, 6300-6304 (2012). doi: 10.1002/adma.201202540
[4] Butt, H. et al. Carbon nanotube based high resolution holograms. Adv. Mater. 24, OP331-OP336 (2012).
[5] Huang, K. et al. Ultrahigh-capacity non-periodic photon sieves operating in visible light. Nat. Commun. 6, 7059 (2015). doi: 10.1038/ncomms8059
[6] Chong, K. E. et al. Polarization-independent silicon metadevices for efficient optical wavefront control. Nano Lett. 15, 5369-5374 (2015). doi: 10.1021/acs.nanolett.5b01752
[7] Wang, L. et al. Grayscale transparent metasurface holograms. Optica 3, 1504-1505 (2016). doi: 10.1364/OPTICA.3.001504
[8] Kruk, S. et al. Broadband highly efficient dielectric metadevices for polarization control. APL Photon. 1, 030801 (2016). doi: 10.1063/1.4949007
[9] Yu, N. F. et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett. 12, 6328-6333 (2012). doi: 10.1021/nl303445u
[10] Arbabi, A. et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun. 6, 7069 (2015). doi: 10.1038/ncomms8069
[11] Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190-1194 (2016). doi: 10.1126/science.aaf6644
[12] Khorasaninejad, M. et al. Efficient polarization beam splitter pixels based on a dielectric metasurface. Optica 2, 376-382 (2015). doi: 10.1364/OPTICA.2.000376
[13] Slovick, B. A. et al. Metasurface polarization splitter. Proc. R. Soc. A 375, 20160072 (2017). doi: 10.1098/rsta.2016.0072
[14] Arbabi, A. et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937-943 (2014).
[15] Overvig, A. C. et al. Dielectric metasurfaces for complete and independent control of optical amplitude and phase. Preprint at https://arxiv.org/pdf/1903.00578.pdf (2019).
[16] Song, X. et al. Selective diffraction with complex amplitude modulation by dielectric metasurfaces. Adv. Opt. Mater. 6, 1701181 (2018). doi: 10.1002/adom.201701181
[17] Lee, G. Y. et al. Complete amplitude and phase control of light using broadband holographic metasurfaces. Nanoscale 10, 4237-4245 (2018). doi: 10.1039/C7NR07154J
[18] Wang, Q. et al. All-dielectric meta-holograms with holographic images transforming longitudinally. ACS Photon. 5, 599-606 (2018). doi: 10.1021/acsphotonics.7b01173
[19] Arbabi, E. et al. Multiwavelength metasurfaces through spatial multiplexing. Sci. Rep. 6, 32803 (2016). doi: 10.1038/srep32803
[20] Arbabi, E. et al. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica 3, 628-633 (2016). doi: 10.1364/OPTICA.3.000628
[21] Huang, Y. W. et al. Aluminum plasmonic multicolor meta-Hologram. Nano Lett. 15, 3122-3127 (2015). doi: 10.1021/acs.nanolett.5b00184
[22] Wan, W., Gao, J. & Yang, X. D. Full-color plasmonic metasurface holograms. ACS Nano 10, 10671-10680 (2016). doi: 10.1021/acsnano.6b05453
[23] Lin, D. M. et al. Photonic multitasking interleaved Si nanoantenna phased array. Nano Lett. 16, 7671-7676 (2016). doi: 10.1021/acs.nanolett.6b03505
[24] Wang, B. et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms. Nano Lett. 16, 5235-5240 (2016). doi: 10.1021/acs.nanolett.6b02326
[25] Zhou, Y. et al. Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics. Nano Lett. 18, 7529-7537 (2018). doi: 10.1021/acs.nanolett.8b03017
[26] Gerchberg, R. W. & Saxton, W. O. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237-246 (1972).
[27] Oskooi, A. F. et al. MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 181, 687-702 (2010). doi: 10.1016/j.cpc.2009.11.008
[28] Decker, M. et al. High-efficiency light-wave control with all-dielectric optical Huygens' metasurfaces. Adv. Opt. Mater. 3, 813-820 (2014).
[29] Moitra, P. et al. Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector. Appl. Phys. Lett. 104, 171102 (2014). doi: 10.1063/1.4873521
[30] Kovalskyy, A. P. et al. Chalcogenide glass e-beam and photoresists for ultrathin grayscale patterning. J. Micro/Nanolithogr. MEMS MOEMS 8, 043012 (2009). doi: 10.1117/1.3273966
[31] Kley, E. B. et al. Adapting existing e-beam writers to write HEBS-glass gray-scale masks. In Proc. SPIE 3633, Diffractive and Holographic Technologies, Systems, and Spatial Light Modulators Ⅵ, 35-45 (SPIE, San Jose, CA, United States, 1999). https://www.spiedigitallibrary.org/conference-proceedings-of-spie/3633/1/Adapting-existing-e-beam-writers-towrite-HEBS-glass-gray/10.1117/12.349333.full.
[32] Kamali, S. M. et al. Angle-multiplexed metasurfaces: encoding independent wavefronts in a single metasurface under different illumination angles. Phys. Rev. X 7, 041056 (2017).
[33] Lin, Z. et al. Topology-optimized multilayered metaoptics. Phys. Rev. Appl. 9, 044030 (2018). doi: 10.1103/PhysRevApplied.9.044030
[34] Pfeiffer, C. et al. High performance bianisotropic metasurfaces: asymmetric transmission of light. Phys. Rev. Lett. 113, 023902 (2014). doi: 10.1103/PhysRevLett.113.023902
[35] Pfeiffer, C. & Grbic, A. Bianisotropic metasurfaces for optimal polarization control: analysis and synthesis. Phys. Rev. Appl. 2, 044011 (2014). doi: 10.1103/PhysRevApplied.2.044011
[36] Molesky, S. et al. Inverse design in nanophotonics. Nat. Photon. 12, 659-670 (2018). doi: 10.1038/s41566-018-0246-9
[37] Jensen, J. S. & Sigmund, O. Topology optimization for nano-photonics. Laser Photon. Rev. 5, 308-321 (2011). doi: 10.1002/lpor.201000014
[38] Callewaert, F. et al. Inverse-designed broadband all-dielectric electromagnetic metadevices. Sci. Rep. 8, 1358 (2018). doi: 10.1038/s41598-018-19796-y
[39] Han, A. L. et al. Inverse design of optical elements based on arrays of dielectric spheres. Appl. Opt. 57, 1437-1446 (2018). doi: 10.1364/AO.57.001437
[40] Liu, V. & Fan, S. H. S4: A free electromagnetic solver for layered periodic structures. Comput. Phys. Commun. 183, 2233-2244 (2012). doi: 10.1016/j.cpc.2012.04.026