| [1] | Harris, D. C. History of magnetorheological finishing. Proceedings of SPIE 8016, Window and Dome Technologies and Materials XII. Orlando: SPIE, 2011, 1-22. |
| [2] | Wan, S. L. et al. Novel magic angle-step state and mechanism for restraining the path ripple of magnetorheological finishing. International Journal of Machine Tools and Manufacture 161, 103673 (2021). doi: 10.1016/j.ijmachtools.2020.103673 |
| [3] | Maloney, C. et al. Novel high-NA MRF toolpath supports production of concave hemispheres. Optifab, 2017, 1044806. |
| [4] | Bai, Y. et al. Rapid fabrication of a silicon modification layer on silicon carbide substrate. Applied Optics 55, 5814-5820 (2016). doi: 10.1364/AO.55.005814 |
| [5] | Kumar, M. et al. Magnetorheological method applied to optics polishing: a review. IOP Conference Series:Materials Science and Engineering 804, 012012 (2020). doi: 10.1088/1757-899X/804/1/012012 |
| [6] | Rolf, R. et al. Improving low, mid and high-spatial frequency errors on advanced aspherical and freeform optics with MRF. Third European Seminar on Precision Optics Manufacturing, 2016, 100090R. |
| [7] | Shorey, A. B. Mechanisms of material removal in magnetorheological finishing (MRF)of glass. PhD thesis, University of Rochester, Rochester, 2000. |
| [8] | Kordonski, V. & Golini, D. Progress update in magnetorheological finishing. Proceedings of the 6th International Conference on Electro-Rheological Fluid, Magnetorheological Suspensions and Their Applications. 1999, 2205-2212. |
| [9] | Shorey, A. B. et al. Experiments and observations regarding the mechanisms of glass removal in magnetorheological finishing. Applied Optics 40, 20-33 (2001). doi: 10.1364/AO.40.000020 |
| [10] | Lambropoulos, J. C., Jacobs, S. D. & Ruckman, J. Material removal mechanisms from grinding to polishing. Ceramic Transactions 102, 113-128 (1999). |
| [11] | DeGroote, J. E. Surface interactions between nanodiamonds and glass in magnetorheological finishing (MRF). PhD thesis, University of Rochester, Rochester, 2009. |
| [12] | Miao, C. L. et al. Shear stress in magnetorheological finishing for glasses. Applied Optics 48, 2585-2594 (2009). doi: 10.1364/AO.48.002585 |
| [13] | Miao, C. et al. Frictional investigation for magnetorheological finishing (MRF) of optical ceramics and hard metals. Optical Fabrication and Testing 2008. Rochester: OSA, 2008. |
| [14] | Kordonski, W. & Gorodkin, S. Material removal in magnetorheological finishing of optics. Applied Optics 50, 1984-1994 (2011). doi: 10.1364/AO.50.001984 |
| [15] | Schinhaerl, M. et al. Calculation of MRF influence functions. Proceedings Volume 6671, Optical Manufacturing and Testing VII. San Diego: SPIE, 2007. |
| [16] | Schinhaerl, M. et al. Mathematical modelling of influence functions in computer-controlled polishing: part I. Applied Mathematical Modelling 32, 2888-2906 (2008). doi: 10.1016/j.apm.2007.10.013 |
| [17] | Liu, S. W. et al. Regionalized modeling approach of tool influence function in magnetorheological finishing process for aspherical optics. Optik 206, 164368 (2020). doi: 10.1016/j.ijleo.2020.164368 |
| [18] | Jiang, J. et al. An experimental study on the normal stress of magnetorheological fluids. Smart Materials and Structures 20, 085012 (2011). doi: 10.1088/0964-1726/20/8/085012 |
| [19] | Guo, C. Y. et al. An experimental investigation on the normal force behavior of magnetorheological suspensions. Korea-Australia Rheology Journal 24, 171-180 (2012). doi: 10.1007/s13367-012-0021-2 |
| [20] | Wang, X. J. & Gordaninejad, F. Study of magnetorheological fluids at high shear rates. Rheologica Acta 45, 899-908 (2006). doi: 10.1007/s00397-005-0058-y |
| [21] | Cheal, O. & Ness, C. Rheology of dense granular suspensions under extensional flow. Journal of Rheology 62, 501-512 (2018). doi: 10.1122/1.5004007 |
| [22] | Rognon, P. G. et al. Dense flows of cohesive granular materials. Journal of Fluid Mechanics 596, 21-47 (2008). doi: 10.1017/S0022112007009329 |
| [23] | Chevoir F. et al. Friction law in dense granular flows. Powder Technology 190, 264-268 (2009). doi: 10.1016/j.powtec.2008.04.061 |
| [24] | DeGiuli, E. & Wyart, M. Friction law and hysteresis in granular materials. Proceedings of the National Academy of Sciences of the United States of America 114, 9284-9289 (2017). doi: 10.1073/pnas.1706105114 |
| [25] | Maurin, R., Chauchat, J. & Frey, P. Dense granular flow rheology in turbulent bedload transport. Journal of Fluid Mechanics 804, 490-512 (2016). doi: 10.1017/jfm.2016.520 |
| [26] | Jop, P., Forterre, Y. & Pouliquen, O. A constitutive law for dense granular flows. Nature 441, 727-730 (2006). doi: 10.1038/nature04801 |
| [27] | Salerno, K. M. et al. Effect of shape and friction on the packing and flow of granular materials. Physical Review E 98, 050901(R) (2018). |
| [28] | De Vicente, J. et al. Squeeze flow magnetorheology. Journal of Rheology 55, 753-779 (2011). doi: 10.1122/1.3574932 |
| [29] | Guo, C. Y. et al. Compression behaviors of magnetorheological fluids under nonuniform magnetic field. Rheologica Acta 52, 165-176 (2013). doi: 10.1007/s00397-013-0678-6 |
| [30] | Mokeev, A., Korobko, E. & Bubulis, A. Simulation of concentration distribution of dispersed particles of magnetorheological fluid in the gap workpiece-tool of finishing polishing device. Mechanika 20, 221-225 (2014). |