[1] Vellekoop, I. M. & Mosk, A. P. Focusing coherent light through opaque strongly scattering media. Optics Letters 32, 2309-2311 (2007). doi: 10.1364/OL.32.002309
[2] Vellekoop, I. M. Feedback-based wavefront shaping. Optics Express 23, 12189-12206 (2015). doi: 10.1364/OE.23.012189
[3] Parthasarathy, A. B. et al. Quantitative phase imaging using a partitioned detection aperture. Optics Letters 37, 4062-4064 (2012). doi: 10.1364/OL.37.004062
[4] Wang, W. J. et al. Real-time monitoring of adaptive lenses with high tuning range and multiple degrees of freedom. Optics Letters 45, 272-275 (2020). doi: 10.1364/OL.45.000272
[5] Platt, B. C. & Shack R. History and principles of shack-Hartmann Wavefront sensing. Journal of Refractive Surgery 17, S573-S577 (2001).
[6] Leith, E. N. & Upatnieks, J. Holographic imagery through diffusing media. Journal of the Optical Society of America 56, 523 (1966). doi: 10.1364/JOSA.56.000523
[7] Shen, Y. C. et al. Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6 cm in thickness with digital optical phase conjugation. Journal of Biomedical Optics 21, 085001 (2016). doi: 10.1117/1.JBO.21.8.085001
[8] Lai, P. X. et al. Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media. Nature Photonics 9, 126-132 (2015). doi: 10.1038/nphoton.2014.322
[9] Cui, M. and Yang, C. Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation. Optics Express 18, 3444-3455 (2010). doi: 10.1364/OE.18.003444
[10] Tehrani, K. F. et al. In situ measurement of the isoplanatic patch for imaging through intact bone. Journal of Biophotonics 14, e202000160 (2021).
[11] Shen, Y. C. et al. Focusing light through scattering media by full-polarization digital optical phase conjugation. Optics Letters 41, 1130-1133 (2016). doi: 10.1364/OL.41.001130
[12] Papadopoulos, I. N. et al. Focusing and scanning light through a multimode optical fiber using digital phase conjugation. Optics Express 20, 10583-10590 (2012). doi: 10.1364/OE.20.010583
[13] Czarske, J. W. et al. Transmission of independent signals through a multimode fiber using digital optical phase conjugation. Optics Express 24, 15128-15136 (2016). doi: 10.1364/OE.24.015128
[14] Scharf, E. et al. Video-rate lensless endoscope with self-calibration using wavefront shaping. Optics Letters 45, 3629-3632 (2020). doi: 10.1364/OL.394873
[15] Gloge, D. Weakly guiding fibers. Applied Optics 10, 2252-2258 (1971). doi: 10.1364/AO.10.002252
[16] Popoff, S. et al. Image transmission through an opaque material. Nature Communications 1, 81 (2010). doi: 10.1038/ncomms1078
[17] Flaes, D. B., Štolzová, H. & Čižmár, T. Time-averaged image projection through a multimode fiber. Optics Express 29, 28005-28020 (2021). doi: 10.1364/OE.431842
[18] Kim, M. et al. Transmission matrix of a scattering medium and its applications in biophotonics. Optics Express 23, 12648-12668 (2015). doi: 10.1364/OE.23.012648
[19] Di Leonardo, R. & Bianchi, S. Hologram transmission through multi-mode optical fibers. Optics Express 19, 247-254 (2011). doi: 10.1364/OE.19.000247
[20] Choi, Y. et al. Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber. Physical Review Letters 109, 203901 (2012). doi: 10.1103/PhysRevLett.109.203901
[21] Conkey, D. B., Caravaca-Aguirre, A. M. & Piestun, R. High-speed scattering medium characterization with application to focusing light through turbid media. Optics Express 20, 1733-1740 (2012). doi: 10.1364/OE.20.001733
[22] Carpenter, J., Eggleton, B. J. & Schröder, J. 110x110 optical mode transfer matrix inversion. Optics Express 22, 96-101 (2014). doi: 10.1364/OE.22.000096
[23] Loterie, D. et al. Digital confocal microscopy through a multimode fiber. Optics Express 23, 23845-23858 (2015). doi: 10.1364/OE.23.023845
[24] Plöschner, M., Tyc, T. & Čižmár, T. Seeing through chaos in multimode fibres. Nature Photonics 9, 529-535 (2015). doi: 10.1038/nphoton.2015.112
[25] Caravaca-Aguirre, A. M. & Piestun, R. Single multimode fiber endoscope. Optics Express 25, 1656-1665 (2017). doi: 10.1364/OE.25.001656
[26] N’Gom, M. et al. Mode control in a multimode fiber through acquiring its transmission matrix from a reference-less optical system. Optics Letters 43, 419-422 (2018). doi: 10.1364/OL.43.000419
[27] Turtaev, S. et al. High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging. Light:Science & Applications 7, 92 (2018).
[28] Caramazza, P. et al. Transmission of natural scene images through a multimode fibre. Nature Communications 10, 2029 (2019). doi: 10.1038/s41467-019-10057-8
[29] Lee, S. Y., Bouma, B. & Villiger, M. Confocal imaging through a multimode fiber without active wave-control. 2019 IEEE Photonics Conference (IPC). San Antonio, USA: IEEE, 2019.
[30] Rothe, S. et al. Transmission matrix measurement of multimode optical fibers by mode-selective excitation using one spatial light modulator. Applied Sciences 9, 195 (2019). doi: 10.3390/app9010195
[31] Chen, H. S. et al. Remote spatio-temporal focusing over multimode fiber enabled by single-ended channel estimation. IEEE Journal of Selected Topics in Quantum Electronics 26, 7701809 (2020).
[32] Lee, S. Y. et al. Measuring the multimode fiber transmission matrix from only the proximal side. 2020 IEEE Photonics Conference (IPC). Vancouver, Canada: IEEE, 2020.
[33] Resisi, S. et al. Wavefront shaping in multimode fibers by transmission matrix engineering. APL Photonics 5, 036103 (2020). doi: 10.1063/1.5136334
[34] Singh, S., Labouesse, S. & Piestun R. Tunable mode control through myriad-mode fibers. Journal of Lightwave Technology 39, 2961-2970 (2021). doi: 10.1109/JLT.2021.3057615
[35] Popoff, S. M. et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Physical Review Letters 104, 100601 (2010). doi: 10.1103/PhysRevLett.104.100601
[36] Vellekoop, I. M. & Mosk, A. P. Universal optimal transmission of light through disordered materials. Physical Review Letters 101, 120601 (2008). doi: 10.1103/PhysRevLett.101.120601
[37] Choi, W. et al. Transmission eigenchannels in a disordered medium. Physical Review B 83, 134207 (2011). doi: 10.1103/PhysRevB.83.134207
[38] Kim, M. et al. Maximal energy transport through disordered media with the implementation of transmission eigenchannels. Nature Photonics 6, 581-585 (2012). doi: 10.1038/nphoton.2012.159
[39] Yılmaz, H. et al. Transverse localization of transmission eigenchannels. Nature Photonics 13, 352-358 (2019). doi: 10.1038/s41566-019-0367-9
[40] Judkewitz, B. et al. Translation correlations in anisotropically scattering media. Nature Physics 11, 684-689 (2015). doi: 10.1038/nphys3373
[41] Solovei, I. et al. Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell 137, 356-368 (2009). doi: 10.1016/j.cell.2009.01.052
[42] Labin, A. M. et al. Müller cells separate between wavelengths to improve day vision with minimal effect upon night vision. Nature Communications 5, 4319 (2014). doi: 10.1038/ncomms5319
[43] Franze, K. et al. Müller cells are living optical fibers in the vertebrate retina. Proceedings of the National Academy of Sciences of the United States of America 104, 8287-8292 (2007). doi: 10.1073/pnas.0611180104
[44] Reichenbach, A. & Bringmann, A. New functions of müller cells. Glia 61, 651-678 (2013). doi: 10.1002/glia.22477
[45] Capowski, E. E. et al. Reproducibility and staging of 3D human retinal organoids across multiple pluripotent stem cell lines. Development 146, dev171686 (2019).
[46] Völkner, M. et al. Optimized adeno-associated virus vectors for efficient transduction of human retinal organoids. Human Gene Therapy 32, 694-706 (2021). doi: 10.1089/hum.2020.321
[47] Völkner, M. et al. Retinal organoids from pluripotent stem cells efficiently recapitulate retinogenesis. Stem Cell Reports 6, 525-538 (2016). doi: 10.1016/j.stemcr.2016.03.001
[48] Guymer, R. & Wu, Z. C. Age-related macular degeneration (AMD): More than meets the eye. The role of multimodal imaging in today’s management of AMD—a review. Clinical & Experimental Ophthalmology 48, 983-995 (2020).
[49] Rahman, N. et al. Macular dystrophies: clinical and imaging features, molecular genetics and therapeutic options. British Journal of Ophthalmology 104, 451-460 (2020). doi: 10.1136/bjophthalmol-2019-315086
[50] Scholler, J. et al. Dynamic full-field optical coherence tomography: 3D live-imaging of retinal organoids. Light:Science & Applications 9, 140 (2020).
[51] Browne, A. W. et al. Structural and functional characterization of human stem-cell-derived retinal organoids by live imaging. Investigative Ophthalmology & Visual Science 58, 3311-3318 (2017).
[52] Stockinger, P. et al. Correlation of in vivo/ex vivo imaging of the posterior eye segment. Ophthalmologe 118, 153-159 (2021). doi: 10.1007/s00347-021-01439-9
[53] Bianchi, S. & Di Leonardo, R. A multi-mode fiber probe for holographic micromanipulation and microscopy. Lab on a Chip 12, 635-639 (2012). doi: 10.1039/C1LC20719A
[54] Plöschner, M. et al. GPU accelerated toolbox for real-time beam-shaping in multimode fibres. Optics Express 22, 2933-2947 (2014). doi: 10.1364/OE.22.002933
[55] Cuche, E., Marquet, P. & Depeursinge, C. Spatial filtering for zero-order and twin-image elimination in digital off-axis holography. Applied Optics 39, 4070-4075 (2000). doi: 10.1364/AO.39.004070
[56] Koukourakis, N. et al. Photorefractive two-wave mixing for image amplification in digital holography. Optics Express 19, 22004-22023 (2011). doi: 10.1364/OE.19.022004
[57] Tikhonov, A. N. On the solution of ill-posed problems and the method of regularization. Doklady Akademii Nauk 151, 501-504 (1963).
[58] Popoff, S. M. et al. Controlling light through optical disordered media: transmission matrix approach. New Journal of Physics 13, 123021 (2011). doi: 10.1088/1367-2630/13/12/123021
[59] Rothe, S. et al. Physical layer security in multimode fiber optical networks. Scientific Reports 10, 2740 (2020). doi: 10.1038/s41598-020-59625-9
[60] Wróbel, M. S. et al. Nanoparticle-free tissue-mimicking phantoms with intrinsic scattering. Biomedical Optics Express 7, 2088-2094 (2016). doi: 10.1364/BOE.7.002088
[61] Marčenko, V. A. & Pastur, L. A. Distribution of eigenvalues for some sets of random matrices. Mathematics of the USSR-Sbornik 1, 457-483 (1967). doi: 10.1070/SM1967v001n04ABEH001994
[62] Gavish, M. & Donoho, D. L. The optimal hard threshold for singular values is 4/ $ \sqrt 3 $. IEEE Transactions on Information Theory 60, 5040-5053 (2014). doi: 10.1109/TIT.2014.2323359
[63] Yang, J. H. et al. Apoptotic cell death of cultured salamander photoreceptors induced by cccp: CsA-insensitive mitochondrial permeability transition. Journal of Cell Science 114, 1655-1664 (2001). doi: 10.1242/jcs.114.9.1655
[64] Das, A. et al. Programmed switch in the mitochondrial degradation pathways during human retinal ganglion cell differentiation from stem cells is critical for RGC survival. Redox Biology 34, 101465 (2020). doi: 10.1016/j.redox.2020.101465
[65] Turtaev, S. et al. Comparison of nematic liquid-crystal and DMD based spatial light modulation in complex photonics. Optics Express 25, 29874-29884 (2017). doi: 10.1364/OE.25.029874
[66] Schmieder, F. et al. Optogenetic stimulation of human neural networks using fast ferroelectric spatial light modulator—based holographic illumination. Applied Sciences 8, 1180 (2018). doi: 10.3390/app8071180
[67] Gérardin, B. et al. Full transmission and reflection of waves propagating through a maze of disorder. Physical Review Letters 113, 173901 (2014). doi: 10.1103/PhysRevLett.113.173901
[68] Popoff, S. M. et al. Exploiting the time-reversal operator for adaptive optics, selective focusing, and scattering pattern analysis. Physical Review Letters 107, 263901 (2011). doi: 10.1103/PhysRevLett.107.263901
[69] Kim, M. et al. Exploring anti-reflection modes in disordered media. Optics Express 23, 12740-12749 (2015). doi: 10.1364/OE.23.012740
[70] Choi, Y. et al. Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium. Physical Review Letters 111, 243901 (2013). doi: 10.1103/PhysRevLett.111.243901
[71] Kim, S. et al. Generation, transcriptome profiling, and functional validation of cone-rich human retinal organoids. Proceedings of the National Academy of Sciences of the United States of America 116, 10824-10833 (2019). doi: 10.1073/pnas.1901572116
[72] Gasparini, S. J. et al. Extensive incorporation, polarisation and improved maturation of transplanted human cones in a murine cone degeneration model. bioRxiv. http://dx.doi.org/10.1101/2021.08.26.457641 (2021).