[1] Meyer-Luehmann, M. et al. Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer's disease. Nature 451, 720–724 (2008). doi: 10.1038/nature06616
[2] Meyer, E. P. et al. Altered morphology and 3D architecture of brain vasculature in a mouse model for Alzheimer's disease. Proc. Natl Acad. Sci. USA 105, 3587–3592 (2008). doi: 10.1073/pnas.0709788105
[3] Jack, C. R. Jr. et al. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol. 9, 119–128 (2010). doi: 10.1016/S1474-4422(09)70299-6
[4] Jack, C. R. Jr. et al. 11C PiB and structural MRI provide complementary information in imaging of Alzheimer's disease and amnestic mild cognitive impairment. Brain 131, 665–680 (2008). doi: 10.1093/brain/awm336
[5] Yang, Y. F. et al. A prototype high-resolution small-animal PET scanner dedicated to mouse brain imaging. J. Nucl. Med. 57, 1130–1135 (2016). doi: 10.2967/jnumed.115.165886
[6] Kim, K. et al. A novel depth-of-interaction rebinning strategy for ultrahigh resolution PET. Phys. Med. Biol. 63, 165011 (2018). doi: 10.1088/1361-6560/aad58c
[7] Badea, A. et al. The fornix provides multiple biomarkers to characterize circuit disruption in a mouse model of Alzheimer's disease. Neuroimage 142, 498–511 (2016). doi: 10.1016/j.neuroimage.2016.08.014
[8] Fuhrmann, M. et al. Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer's disease. Nat. Neurosci. 13, 411–413 (2010). doi: 10.1038/nn.2511
[9] Takasaki, K., Abbasi-Asl, R. & Waters, J. Superficial bound of the depth limit of two-photon imaging in mouse brain. eNeuro 7, ENEURO. 0255-19.2019 (2020).
[10] Wang, T. Y. & Xu, C. Three-photon neuronal imaging in deep mouse brain. Optica 7, 947–960 (2020). doi: 10.1364/OPTICA.395825
[11] Horton, N. G. et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat. Photonics 7, 205–209 (2013). doi: 10.1038/nphoton.2012.336
[12] Wang, T. Y. et al. Three-photon imaging of mouse brain structure and function through the intact skull. Nat. Methods 15, 789–792 (2018). doi: 10.1038/s41592-018-0115-y
[13] Srinivasan, V. J. et al. Optical coherence microscopy for deep tissue imaging of the cerebral cortex with intrinsic contrast. Opt. Express 20, 2220–2239 (2012). doi: 10.1364/OE.20.002220
[14] Yang, G. et al. Thinned-skull cranial window technique for long-term imaging of the cortex in live mice. Nat. Protoc. 5, 201–208 (2010). doi: 10.1038/nprot.2009.222
[15] Drew, P. J. et al. Chronic optical access through a polished and reinforced thinned skull. Nat. Methods 7, 981–984 (2010). doi: 10.1038/nmeth.1530
[16] Shi, L. Y. & Alfano, R. R. Deep imaging in tissue and biomedical materials: using linear and nonlinear optical methods (Singapore: Pan Stanford, 2017).
[17] Chong, S. P. et al. Noninvasive, in vivo imaging of subcortical mouse brain regions with 1.7 μm optical coherence tomography. Opt. Lett. 40, 4911–4914 (2015). doi: 10.1364/OL.40.004911
[18] Park, K. S. et al. Deep brain optical coherence tomography angiography in mice: in vivo, noninvasive imaging of hippocampal formation. Sci. Rep. 8, 11614 (2018). doi: 10.1038/s41598-018-29975-6
[19] Yamanaka, M., Hayakawa, N. & Nishizawa, N. Signal-to-background ratio and lateral resolution in deep tissue imaging by optical coherence microscopy in the 1700 nm spectral band. Sci. Rep. 9, 16041 (2019). doi: 10.1038/s41598-019-52175-9
[20] Xia, F. et al. In vivo label-free confocal imaging of the deep mouse brain with long-wavelength illumination. Biomed. Opt. Express 9, 6545–6555 (2018). doi: 10.1364/BOE.9.006545
[21] Marks, D. L. et al. Digital algorithm for dispersion correction in optical coherence tomography for homogeneous and stratified media. Appl. Opt. 42, 204–217 (2003). doi: 10.1364/AO.42.000204
[22] Agrawal, H. C., Davis, J. M. & Himwich, W. A. Developmental changes in mouse brain: weight, water content and free amino acids. J. Neurochem. 15, 917–923 (1968). doi: 10.1111/j.1471-4159.1968.tb11633.x
[23] Kedenburg, S. et al. Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region. Optical Mater. Express 2, 1588–1611 (2012). doi: 10.1364/OME.2.001588
[24] Hale, G. M. & Querry, M. R. Optical constants of water in the 200-nm to 200-μm wavelength region. Appl. Opt. 12, 555–563 (1973). doi: 10.1364/AO.12.000555
[25] Max, J. J. & Chapados, C. Isotope effects in liquid water by infrared spectroscopy. Ⅲ. H2O and D2O spectra from 6000 to 0 cm−1. J. Chem. Phys. 131, 184505 (2009). doi: 10.1063/1.3258646
[26] Yasuno, Y. et al. In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography. Opt. Express 15, 6121–6139 (2007). doi: 10.1364/OE.15.006121
[27] Tsai, P. S. et al. Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels. J. Neurosci. 29, 14553–14570 (2009). doi: 10.1523/JNEUROSCI.3287-09.2009
[28] Jacques, S. L., Wang, B. & Samatham, R. Reflectance confocal microscopy of optical phantoms. Biomed. Opt. Express 3, 1162–1172 (2012). doi: 10.1364/BOE.3.001162
[29] Leahy, C., Radhakrishnan, H. & Srinivasan, V. J. Volumetric imaging and quantification of cytoarchitecture and myeloarchitecture with intrinsic scattering contrast. Biomed. Opt. Express 4, 1978–1990 (2013). doi: 10.1364/BOE.4.001978
[30] Wang, M. R. et al. Comparing the effective attenuation lengths for long wavelength in vivo imaging of the mouse brain. Biomed. Opt. Express 9, 3534–3543 (2018). doi: 10.1364/BOE.9.003534
[31] Hui, J. et al. Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves. Photoacoustics 4, 11–21 (2016). doi: 10.1016/j.pacs.2016.01.002
[32] Leitgeb, R. et al. Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography. Opt. Lett. 25, 820–822 (2000). doi: 10.1364/OL.25.000820
[33] Jacques, S. L. Optical properties of biological tissues: a review. Phys. Med. Biol. 58, R37–R61 (2013). doi: 10.1088/0031-9155/58/11/R37
[34] Li, X. M. et al. Aquaporin-4 expression contributes to decreases in brain water content during mouse postnatal development. Brain Res. Bull. 94, 49–55 (2013). doi: 10.1016/j.brainresbull.2013.02.004
[35] Matthieu, J. M., Widmer, S. & Herschkowitz, N. Biochemical changes in mouse brain composition during myelination. Brain Res. 55, 391–402 (1973). doi: 10.1016/0006-8993(73)90304-1
[36] Oakley, H. et al. Intraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer's disease mutations: potential factors in amyloid plaque formation. J. Neurosci. 26, 10129–10140 (2006). doi: 10.1523/JNEUROSCI.1202-06.2006
[37] Ohno, M. et al. BACE1 gene deletion prevents neuron loss and memory deficits in 5XFAD APP/PS1 transgenic mice. Neurobiol. Dis. 26, 134–145 (2007). doi: 10.1016/j.nbd.2006.12.008
[38] Spires, T. L. et al. Dendritic spine abnormalities in amyloid precursor protein transgenic mice demonstrated by gene transfer and intravital multiphoton microscopy. J. Neurosci. 25, 7278–7287 (2005). doi: 10.1523/JNEUROSCI.1879-05.2005
[39] Gu, L. H. et al. Myelin changes at the early stage of 5XFAD mice. Brain Res. Bull. 137, 285–293 (2018). doi: 10.1016/j.brainresbull.2017.12.013
[40] Papuć, E. & Rejdak, K. The role of myelin damage in Alzheimer's disease pathology. Arch. Med. Sci. 16, 345–351 (2020). doi: 10.5114/aoms.2018.76863
[41] Conchello, J. A. & Lichtman, J. W. Optical sectioning microscopy. Nat. Methods 2, 920–931 (2005). doi: 10.1038/nmeth815
[42] Sheppard, C. J. & Shotton, D. M. Confocal laser scanning microscopy (Oxford: BIOS Scientific, 1997).
[43] Izatt, J. A. et al. Optical coherence microscopy in scattering media. Opt. Lett. 19, 590–592 (1994). doi: 10.1364/OL.19.000590
[44] Zhu, D. et al. Recent progress in tissue optical clearing. Laser Photonics Rev. 7, 732–757 (2013). doi: 10.1002/lpor.201200056
[45] Zhu, J. et al. Noninvasive, in vivo rodent brain optical coherence tomography at 2.1 microns. Opt. Lett. 44, 4147–4150 (2019).
[46] Nishizawa, N. & Takayanagi, J. Octave spanning high-quality supercontinuum generation in all-fiber system. J. Optical Soc. Am. B 24, 1786–1792 (2007). doi: 10.1364/JOSAB.24.001786
[47] Ouzounov, D. G. et al. In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain. Nat. Methods 14, 388–390 (2017). doi: 10.1038/nmeth.4183
[48] Redlich, M. J. & Lim, H. A method to measure myeloarchitecture of the murine cerebral cortex in vivo and ex vivo by intrinsic third-harmonic generation. Front. Neuroanat. 13, 65 (2019). doi: 10.3389/fnana.2019.00065
[49] Schain, A. J., Hill, R. A. & Grutzendler, J. Label-free in vivo imaging of myelinated axons in health and disease with spectral confocal reflectance microscopy. Nat. Med. 20, 443–449 (2014). doi: 10.1038/nm.3495
[50] Bolmont, T. et al. Label-free imaging of cerebral β-amyloidosis with extended-focus optical coherence microscopy. J. Neurosci. 32, 14548–14556 (2012). doi: 10.1523/JNEUROSCI.0925-12.2012