[1] |
Fujiwara, H. Spectroscopic Ellipsometry: Principles and Applications. (John Wiley & Sons, Chichester, 2007). |
[2] |
Steier, W. H. et al. Polymer electro-optic devices for integrated optics. Chem. Phys. 245, 487-506 (1999). doi: 10.1016/S0301-0104(99)00042-7 |
[3] |
Ma, H., Jen, A. K. Y. & Dalton, L. R. Polymer-based optical waveguides: materials, processing, and devices. Adv. Mater. 14, 1339-1365 (2002). doi: 10.1002/1521-4095(20021002)14:19<1339::AID-ADMA1339>3.0.CO;2-O |
[4] |
Chaneliere, C. et al. Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications. Mater. Sci. Eng. R 22, 269-322 (1998). doi: 10.1016/S0927-796X(97)00023-5 |
[5] |
Zhang, L. et al. Correlated metals as transparent conductors. Nat. Mater. 15, 204-210 (2016). doi: 10.1038/nmat4493 |
[6] |
Choi, W. S. et al. Wide bandgap tunability in complex transition metal oxides by site-specific substitution. Nat. Commun. 3, 689 (2012). doi: 10.1038/ncomms1690 |
[7] |
Kim, K. J. et al. Optical properties and electronic structures of the intermetallic compounds AuGa2 and PtGa2. Phys. Rev. B 42, 8813-8819 (1990). doi: 10.1103/PhysRevB.42.8813 |
[8] |
Kolesov, V. A. et al. Solution-based electrical doping of semiconducting polymer films over a limited depth. Nat. Mater. 16, 474-480 (2017). doi: 10.1038/nmat4818 |
[9] |
Fujiwara, H. & Kondo, M. Effects of carrier concentration on the dielectric function of ZnO: Ga and In2O3: Sn studied by spectroscopic ellipsometry: analysis of free-carrier and band-edge absorption. Phys. Rev. B 71, 075109 (2005). |
[10] |
Oates, T. W. H. Real time spectroscopic ellipsometry of nanoparticle growth. Appl. Phys. Lett. 88, 213115 (2006). doi: 10.1063/1.2206870 |
[11] |
Vedam, K. Spectroscopic ellipsometry: a historical overview. Thin Solid Films 313-314, 1-9 (1998). |
[12] |
Xie, J. F. et al. Optical properties of chemical vapor deposition-grown PtSe2 characterized by spectroscopic ellipsometry. 2D Mater. 6, 035011 (2019). doi: 10.1088/2053-1583/ab1490 |
[13] |
Tarantola, A. Popper, Bayes and the inverse problem. Nat. Phys. 2, 492-494 (2006). doi: 10.1038/nphys375 |
[14] |
Tarantola, A. Inverse Problem Theory and Methods for Model Parameter Estimation. (Society for Industrial and Applied Mathematics, Philadelphia, 2005). |
[15] |
Rosa, R. The inverse problem of ellipsometry: a bootstrap approach. Inverse Probl. 4, 887-900 (1988). doi: 10.1088/0266-5611/4/3/021 |
[16] |
Tikhonov, A. N. & Arsenin, V. Y. Solutions of Ill-Posed Problems. (Winston and Sons, Washington, 1977). |
[17] |
Tompkins, H. G. A User's Guide to Ellipsometry. (Academic Press, San Diego, 1993). |
[18] |
Akbalık, A. et al. An inverse ellipsometric problem for thin film characterization: comparison of different optimization methods. Proc. SPIE 7272, Metrology, Inspection, and Process Control for Microlithography XXIII, 72723S. (SPIE, San Jose, USA, 2009). |
[19] |
Synowicki, R. A. Spectroscopic ellipsometry characterization of indium tin oxide film microstructure and optical constants. Thin Solid Films 313-314, 394-397 (1998). |
[20] |
Herzinger, C. M. et al. Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation. J. Appl. Phys. 83, 3323-3336 (1998). doi: 10.1063/1.367101 |
[21] |
Forouhi, A. R. & Bloomer, I. Optical dispersion relations for amorphous semiconductors and amorphous dielectrics. Phys. Rev. B 34, 7018-7026 (1986). doi: 10.1103/PhysRevB.34.7018 |
[22] |
Forouhi, A. R. & Bloomer, I. Optical properties of crystalline semiconductors and dielectrics. Phys. Rev. B 38, 1865-1874 (1988). doi: 10.1103/PhysRevB.38.1865 |
[23] |
Tauc, J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3, 37-46 (1968). doi: 10.1016/0025-5408(68)90023-8 |
[24] |
Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370-4379 (1972). doi: 10.1103/PhysRevB.6.4370 |
[25] |
Sehmi, H. S., Langbein, W. & Muljarov, E. A. Optimizing the Drude-Lorentz model for material permittivity: method, program, and examples for gold, silver, and copper. Phys. Rev. B 95, 115444 (2017). |
[26] |
Polovinkin, V. G. & Svitasheva, S. N. Analysis of general ambiguity of inverse ellipsometric problem. Thin Solid Films 313-314, 128-131 (1998). |
[27] |
Hilfiker, J. N. et al. Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry. Thin Solid Films 516, 7979-7989 (2008). doi: 10.1016/j.tsf.2008.04.060 |
[28] |
Paik, W. K. & Bockris, J. O. Exact ellipsometric measurement of thickness and optical properties of a thin light-absorbing film without auxiliary measurements. Surf. Sci. 28, 61-68 (1971). doi: 10.1016/0039-6028(71)90084-7 |
[29] |
Secondo, R. et al. Reliable modeling of ultrathin alternative plasmonic materials using spectroscopic ellipsometry [Invited]. Opt. Mater. Express 9, 760-770 (2019). doi: 10.1364/OME.9.000760 |
[30] |
McGahan, W. A., Johs, B. & Woollam, J. A. Techniques for ellipsometric measurement of the thickness and optical constants of thin absorbing films. Thin Solid Films 234, 443-446 (1993). doi: 10.1016/0040-6090(93)90303-7 |
[31] |
Landgren, M. & Jönsson, B. Determination of the optical properties of Si/SiO2 surfaces by means of ellipsometry, using different ambient media. J. Phys. Chem. 97, 1656-1660 (1993). doi: 10.1021/j100110a030 |
[32] |
Urban, F. K. & Tabet, M. F. Real time, in-situ ellipsometry solutions using artificial neural network pre-processing. Thin Solid Films 245, 167-173 (1994). doi: 10.1016/0040-6090(94)90894-X |
[33] |
Silver, D. et al. Mastering the game of Go with deep neural networks and tree search. Nature 529, 484-489 (2016). doi: 10.1038/nature16961 |
[34] |
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436-444 (2015). |
[35] |
He, K. M. et al. Deep residual learning for image recognition. Proc. 2016 IEEE Conference on Computer Vision and Pattern Recognition. 770-778 (IEEE, Las Vegas, USA, 2016). |
[36] |
He, K. M. et al. Mask R-CNN. Proc. 2017 IEEE International Conference on Computer Vision. 2980-2988 (IEEE, Venice, Italy, 2017). |
[37] |
Amodei, D. et al. Deep speech 2: end-to-end speech recognition in English and Mandarin. Proc. 33rd International Conference on Machine Learning. 173-182 (PMLR, New York City, USA, 2016). |
[38] |
Wu, Y. H. et al. Google's neural machine translation system: bridging the gap between human and machine translation. Preprint at arXiv https://arxiv.org/abs/1609.08144 (2016). |
[39] |
Carleo, G. & Troyer, M. Solving the quantum many-body problem with artificial neural networks. Science 355, 602-606 (2017). doi: 10.1126/science.aag2302 |
[40] |
Liu, J. C. et al. Deep convolutional neural networks for Raman spectrum recognition: a unified solution. Analyst 142, 4067-4074 (2017). doi: 10.1039/C7AN01371J |
[41] |
Schütt, K. T. et al. Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions. Nat. Commun. 10, 5024 (2019). doi: 10.1038/s41467-019-12875-2 |
[42] |
Liu, J. C. et al. Dynamic spectrum matching with one-shot learning. Chemometr. Intell. Lab. Syst. 184, 175-181 (2019). doi: 10.1016/j.chemolab.2018.12.005 |
[43] |
Senior, A. W. et al. Improved protein structure prediction using potentials from deep learning. Nature 577, 706-710 (2020). doi: 10.1038/s41586-019-1923-7 |
[44] |
Peurifoy, J. et al. Nanophotonic particle simulation and inverse design using artificial neural networks. Sci. Adv. 4, eaar4206 (2018). doi: 10.1126/sciadv.aar4206 |
[45] |
del Hougne, P. et al. Learned integrated sensing pipeline: reconfigurable metasurface transceivers as trainable physical layer in an artificial neural network. Adv. Sci. 7, 1901913 (2020). |
[46] |
Carrasquilla, J. & Melko, R. G. Machine learning phases of matter. Nat. Phys. 13, 431-434 (2017). doi: 10.1038/nphys4035 |
[47] |
Baldi, P., Sadowski, P. & Whiteson, D. Searching for exotic particles in high-energy physics with deep learning. Nat. Commun. 5, 4308 (2014). doi: 10.1038/ncomms5308 |
[48] |
Wang, F. et al. Phase imaging with an untrained neural network. Light Sci. Appl. 9, 77 (2020). |
[49] |
Liu, X. W. et al. Deep learning for Feynman's path integral in strong-field time-dependent dynamics. Phys. Rev. Lett. 124, 113202 (2020). doi: 10.1103/PhysRevLett.124.113202 |
[50] |
Malus, E. L. Théorie de la Double Réfraction de la Lumière dans les substances cristallisées. (l'Institut de France, Paris, 1810). |
[51] |
Born, M. & Wolf, E. Principles of Optics. 7th edn. (Cambridge University Press, Cambridge, 2013). |
[52] |
Connes, P. From Newtonian fits to Wellsian heat rays: the history of multiple-beam interference. J. Opt. 17, 5-28 (1986). doi: 10.1088/0150-536X/17/1/001 |
[53] |
Palik, E. D. Handbook of Optical Constants of Solids. (Academic Press, San Diego, 1985). |
[54] |
Sopra, S. A. Optical Data From Sopra SA. http://www.sspectra.com/sopra.html (2018). |
[55] |
Burke, E. K. & Kendall, G. Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques. (Springer, Boston, 2005). |