[1] Kawata, O. et al. A splicing and inspection technique for single-mode fibers using direct core monitoring. Journal of Lightwave Technology 2, 185-191 (1984).
[2] Michaud-Belleau, V. et al. Backscattering in antiresonant hollow-core fibers: over 40 dB lower than in standard optical fibers. Optica 8, 216-219 (2021).
[3] Belardi, W. & Knight, J. C. Hollow antiresonant fibers with reduced attenuation. Optics Letters 39, 1853-1856 (2014).
[4] Couny, F. , Benabid, F. & Light, P. S. Large pitch Kagome-structured hollow-core photonic crystal fiber. Optics Letters 31, 3574-3576 (2006).
[5] Poletti, F. , Petrovich, M. N. & Richardson, D. J. Hollow-core photonic bandgap fibers: technology and applications. Nanophotonics 2, 315-340 (2013).
[6] Tani, F. et al. Effect of anti-crossings with cladding resonances on ultrafast nonlinear dynamics in gas-filled photonic crystal fibers. Photonics Research 6, 84-88 (2018).
[7] Lloyd, S. W. , Digonnet, M. J. F. & Fan, S. H. Modeling coherent backscattering errors in fiber optic gyroscopes for sources of arbitrary line width. Journal of Lightwave Technology 31, 2070-2078 (2013).
[8] Arditty, H. J. & Lefevre, H. C. Fiber-optic gyroscopes. in New Directions in Guided Wave and Coherent Optics (eds Ostrowsky, D. B. & Spitz, E. ) (Dordrecht: Springer, 1984), 299-333.
[9] Poveda-Wong, L. et al. Fabrication of long period fiber gratings of subnanometric bandwidth. Optics Letters 42, 1265-1268 (2017).
[10] Brennan, J. Dispersion management with long-length fiber Bragg gratings. Proceedings of 2003 Optical Fiber Communications Conference, 2003. Atlanta, GA, USA: IEEE, 2003.
[11] Fan, J. T. et al. Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution. Nature Photonics 13, 809-816 (2019).
[12] Lohmann, A. W. et al. Space–bandwidth product of optical signals and systems. Journal of the Optical Society of America A 13, 470-473 (1996).
[13] Wu, J. B. Study on the diameter measurement of optical fibers using the method of forward near-axis far-field interference. Proceedings of the IMTC/98 Conference Proceedings. IEEE Instrumentation and Measurement Technology Conference. Where Instrumentation is Going. St. Paul, MN, USA: IEEE, 1998, 1149-1152.
[14] Presby, H. M. Refractive index and diameter measurements of unclad optical fibers. Journal of the Optical Society of America 64, 280-284 (1974).
[15] Smithgall, D. H. , Watkins, L. S. & Frazee, R. E. High-speed noncontact fiber-diameter measurement using forward light scattering. Applied Optics 16, 2395-2402 (1977).
[16] Jasapara, J. et al. Accurate noncontact optical fiber diameter measurement with spectral interferometry. Optics Letters 28, 601-603 (2003).
[17] Ashkin, A. , Dziedzic, J. M. & Stolen, R. H. Outer diameter measurement of low birefringence optical fibers by a new resonant backscatter technique. Applied Optics 20, 2299-2303 (1981).
[18] Birks, T. A. , Knight, J. C. & Dimmick, T. E. High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment. IEEE Photonics Technology Letters 12, 182-183 (2000).
[19] Sumetsky, M. & Dulashko, Y. Radius variation of optical fibers with angstrom accuracy. Optics Letters 35, 4006-4008 (2010).
[20] Alcusa-Sáez, E. P. et al. Time-resolved acousto-optic interaction in single-mode optical fibers: characterization of axial nonuniformities at the nanometer scale. Optics Letters 39, 1437-1440 (2014).
[21] Alcusa-Sáez, E. P. et al. Improved time-resolved acousto-optic technique for optical fiber analysis of axial non-uniformities by using edge interrogation. Optics Express 23, 7345-7350 (2015).
[22] Ohashi, M. , Shibata, N. & Shiraki, K. Fibre diameter estimation based on guided acoustic wave Brillouin scattering. Electronics Letters 28, 900-902 (1992).
[23] Zhao, Y. et al. Photoacoustic Brillouin spectroscopy of gas-filled anti-resonant hollow-core optical fibers. Optica 8, 532-538 (2021).
[24] Shelby, R. M. , Levenson, M. D. & Bayer, P. W. Guided acoustic-wave Brillouin scattering. Physical Review. B,Condensed Matter 31, 5244-5252 (1985).
[25] Bashan, G. et al. Optomechanical time-domain reflectometry. Nature Communications 9, 2991 (2018).
[26] Chow, D. M. et al. Distributed forward Brillouin sensor based on local light phase recovery. Nature Communications 9, 2990 (2018).
[27] Pang, C. et al. Opto-mechanical time-domain analysis based on coherent forward stimulated Brillouin scattering probing. Optica 7, 176-184 (2020).
[28] Brekhovskikh, L. & Goncharov, V. Elastic waves in solids. in Mechanics of Continua and Wave Dynamics (eds Brekhovskikh, L. & Goncharov, V.) (Berlin, Heidelberg: Springer, 1985), 55-74.
[29] Horiguchi, T. et al. Development of a distributed sensing technique using Brillouin scattering. Journal of Lightwave Technology 13, 1296-1302 (1995).
[30] Antman, Y. et al. Optomechanical sensing of liquids outside standard fibers using forward stimulated Brillouin scattering. Optica 3, 510-516 (2016).
[31] Diamandi, H. H. , London, Y. & Zadok, A. Opto-mechanical inter-core cross-talk in multi-core fibers. Optica 4, 289-297 (2017).
[32] Lu, C. S. et al. Circle detection by arc-support line segments. Proceedings of 2017 IEEE International Conference on Image Processing. Beijing, China: IEEE, 2017, 76-80.
[33] Hayashi, N. et al. Temperature coefficient of sideband frequency produced by polarized guided acoustic-wave Brillouin scattering in highly nonlinear fibers. Applied Physics Express 10, 092501 (2017).
[34] Tanaka, Y. & Ogusu, K. Temperature coefficient of sideband frequencies produced by depolarized guided acoustic-wave Brillouin scattering. IEEE Photonics Technology Letters 10, 1769-1771 (1998).
[35] Tu, X. B. et al. Vector brillouin optical time-domain analysis with heterodyne detection and IQ demodulation algorithm. IEEE Photonics Journal 6, 6800908 (2014).
[36] Zhou, D. W. et al. Slope-assisted BOTDA based on vector SBS and frequency-agile technique for wide-strain-range dynamic measurements. Optics Express 25, 1889-1902 (2017).
[37] Li, W. H. et al. Differential pulse-width pair BOTDA for high spatial resolution sensing. Optics Express 16, 21616-21625 (2008).
[38] Diakaridia, S. et al. Detecting cm-scale hot spot over 24-km-long single-mode fiber by using differential pulse pair BOTDA based on double-peak spectrum. Optics Express 25, 17727-17736 (2017).