[1] |
Gabor, D. A new microscopic principle. Nature 161, 777-778 (1948). doi: 10.1038/161777a0 |
[2] |
Hesselink, L. et al. Photorefractive materials for nonvolatile volume holographic data storage. Science 282, 1089-1094 (1998). doi: 10.1126/science.282.5391.1089 |
[3] |
Melde, K. et al. Holograms for acoustics. Nature 537, 518-522 (2016). doi: 10.1038/nature19755 |
[4] |
Liebel, M. et al. Ultrafast transient holographic microscopy. Nano Letters 21, 1666-1671 (2021). doi: 10.1021/acs.nanolett.0c04416 |
[5] |
Heanue, J. F., Bashaw, M. C. & Hesselink, L. Volume holographic storage and retrieval of digital data. Science 265, 749-752 (1994). doi: 10.1126/science.265.5173.749 |
[6] |
Wang, D. et al. Holographic capture and projection system of real object based on tunable zoom lens. PhotoniX 1, 6 (2020). doi: 10.1186/s43074-020-0004-3 |
[7] |
Shi, L. et al. Towards real-time photorealistic 3D holography with deep neural networks. Nature 591, 234-239 (2021). doi: 10.1038/s41586-020-03152-0 |
[8] |
Blanche, P. A. Holography, and the future of 3D display. Light:Advanced Manufacturing 2, 446-459 (2021). |
[9] |
Blinder, D. et al. The state-of-the-art in computer generated holography for 3D display. Light:Advanced Manufacturing 3, 572-600 (2022). |
[10] |
Yaraş, F., Kang, H. & Onural, L. Circular holographic video display system. Optics Express 19, 9147-9156 (2011). doi: 10.1364/OE.19.009147 |
[11] |
Sando, Y. et al. Holographic augmented reality display with conical holographic optical element for wide viewing zone. Light:Advanced Manufacturing 3, 26-34 (2022). |
[12] |
Park, J. H. & Lee, B. Holographic techniques for augmented reality and virtual reality near-eye displays. Light:Advanced Manufacturing 3, 137-150 (2022). |
[13] |
An, J. et al. Slim-panel holographic video display. Nature Communications 11, 5568 (2020). doi: 10.1038/s41467-020-19298-4 |
[14] |
Gao, H. et al. Dynamic 3D meta-holography in visible range with large frame number and high frame rate. Science Advances 6, eaba8595 (2020). doi: 10.1126/sciadv.aba8595 |
[15] |
Zhan, T. et al. Multifocal displays: review and prospect. PhotoniX 1, 10 (2020). doi: 10.1186/s43074-020-00010-0 |
[16] |
Yu, H. et al. Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields. Nature Photonics 11, 186-192 (2017). doi: 10.1038/nphoton.2016.272 |
[17] |
Park, J., Lee, K. R. & Park, Y. K. Ultrathin wide-angle large-area digital 3D holographic display using a non-periodic photon sieve. Nature Communications 10, 1304 (2019). doi: 10.1038/s41467-019-09126-9 |
[18] |
Li, X. et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Science Advances 2, e1601102 (2016). doi: 10.1126/sciadv.1601102 |
[19] |
Li, J. X. et al. Electrically-controlled digital metasurface device for light projection displays. Nature Communications 11, 3574 (2020). doi: 10.1038/s41467-020-17390-3 |
[20] |
Hu, Y. Q. et al. 3D-Integrated metasurfaces for full-colour holography. Light: Science & Applications 8, 86 (2019). |
[21] |
Li, Y. et al. Ultracompact multifunctional metalens visor for augmented reality displays. PhotoniX 3, 29 (2022). doi: 10.1186/s43074-022-00075-z |
[22] |
Wakunami, K. et al. Projection-type see-through holographic three-dimensional display. Nature Communications 7, 12954 (2016). doi: 10.1038/ncomms12954 |
[23] |
Li, Y. et al. 3D displays in augmented and virtual realities with holographic optical elements [Invited]. Optics Express 29, 42696-42712 (2021). |
[24] |
Li, G. et al. Holographic display for see-through augmented reality using mirror-lens holographic optical element. Optics Letters 41, 2486-2489 (2016). doi: 10.1364/OL.41.002486 |
[25] |
Huang, Z. Q., Marks, D. L. & Smith, D. R. Out-of-plane computer-generated multicolor waveguide holography. Optica 6, 119-124 (2019). doi: 10.1364/OPTICA.6.000119 |
[26] |
Wen, D. D. et al. Helicity multiplexed broadband metasurface holograms. Nature Communications 6, 8241 (2015). doi: 10.1038/ncomms9241 |
[27] |
Zhao, R. Z. et al. Multichannel vectorial holographic display and encryption. Light:Science & Applications 7, 95 (2018). |
[28] |
Li, Q. et al. Directing dynamic control of red, green, and blue reflection enabled by a light-driven self-organized helical superstructure. Advanced Materials 23, 5069-5073 (2011). doi: 10.1002/adma.201103362 |
[29] |
Lee, S. et al. Foveated near-eye display for mixed reality using liquid crystal photonics. Scientific Reports 10, 16127 (2020). doi: 10.1038/s41598-020-72555-w |
[30] |
Zheng, Z. G. et al. Light-patterned crystallographic direction of a self-organized 3D soft photonic crystal. Advanced Materials 29, 1703165 (2017). doi: 10.1002/adma.201703165 |
[31] |
Ma, L. L. et al. Self-assembled liquid crystal architectures for soft matter photonics. Light:Science & Applications 11, 270 (2022). |
[32] |
Yin, K. et al. Advanced liquid crystal devices for augmented reality and virtual reality displays: principles and applications. Light:Science & Applications 11, 161 (2022). |
[33] |
He, Z. Q. et al. Enlarging the eyebox of maxwellian displays with a customized liquid crystal Dammann grating. Crystals 11, 195 (2021). doi: 10.3390/cryst11020195 |
[34] |
Zola, R. S. et al. Dynamic control of light direction enabled by stimuli-responsive liquid crystal gratings. Advanced Materials 31, 1806172 (2019). doi: 10.1002/adma.201806172 |
[35] |
Xiong, J. H. et al. Augmented reality and virtual reality displays: emerging technologies and future perspectives. Light:Science & Applications 10, 216 (2021). |
[36] |
Li, Y. L. et al. Tunable liquid crystal grating based holographic 3D display system with wide viewing angle and large size. Light:Science & Applications 11, 188 (2022). |
[37] |
Yaraş, F., Kang. H. & Onural, L. Circular holographic video display system. Optics Express 19, 9147-9156 (2011). doi: 10.1364/OE.19.009147 |
[38] |
Senoh, T. et al. Viewing-zone-angle expansion of tiled color electronic holography reconstruction system. Proceedings of the SPIE 9006 Practical Holography XXVIII: Materials and Applications. San Francisco: SPIE, 2014, 90060Z. |
[39] |
Zhan, T. et al. Practical chromatic aberration correction in virtual reality displays enabled by cost-effective ultra-broadband liquid crystal polymer lenses. Advanced Optical Materials 8, 1901360 (2020). doi: 10.1002/adom.201901360 |