| [1] | Park, Y., Depeursinge, C. & Popescu, G. Quantitative phase imaging in biomedicine. Nature Photonics 12, 578-589 (2018). doi: 10.1038/s41566-018-0253-x |
| [2] | Chowdhury, S., et al. Spatial frequency-domain multiplexed microscopy for simultaneous, singlecamera, one-shot, fluorescent, and quantitative-phase imaging. Optics Letters 40, 4839-4842 (2015). doi: 10.1364/OL.40.004839 |
| [3] | Dudenkova, V. V. & Zakharov, Y. N. Multimodal combinational holographic and fluorescence fluctuation microscopy to obtain spatial super-resolution. Journal of Physics: Conference Series 737, 012069 (2016). doi: 10.1088/1742-6596/737/1/012069 |
| [4] | Alonso, D., Garcia, J. & Micó, V. Fluholoscopy—compact and simple platform combining fluorescence and holographic microscopy. Biosensors 13, 253 (2023). doi: 10.3390/bios13020253 |
| [5] | Schürmann, M., et al. Three-dimensional correlative single-cell imaging utilizing fluorescence and refractive index tomography. Journal of Biophotonics 11, e201700145 (2018). doi: 10.1002/jbio.201700145 |
| [6] | Descloux, A., et al. Combined multi-plane phase retrieval and super-resolution optical fluctuation imaging for 4D cell microscopy. Nature Photonics 12, 165-172 (2018). doi: 10.1038/s41566-018-0109-4 |
| [7] | Yeh, S.-C. A., et al. Monitoring photosensitizer uptake using two photon fluorescence lifetime imaging microscopy. Theranostics 2, 817-826 (2012). doi: 10.7150/thno.4479 |
| [8] | Lassalle, H.-P., et al. Fluorescence imaging of foscan® and foslip in the plasma membrane and in whole cells. Journal of Photochemistry and Photobiology B: Biology 92, 47-53 (2008). doi: 10.1016/j.jphotobiol.2008.04.007 |
| [9] | Belashov, A. V., et al. Quantitative assessment of changes in cellular morphology at photodynamic treatment in vitro by means of digital holographic microscopy. Biomedical Optics Express 10, 4975-4986 (2019). doi: 10.1364/BOE.10.004975 |
| [10] | Belashov, A. V., et al. Machine learning assisted classification of cell lines and cell states on quantitative phase images. Cells 10, 2587 (2021). doi: 10.3390/cells10102587 |
| [11] | Kolenc, O. I. & Quinn, K. P. Evaluating cell metabolism through autofluorescence imaging of NAD(P)H and FAD. Antioxidants & Redox Signaling 30, 875-889 (2019). |
| [12] | Georgakoudi, I. & Quinn, K. P. Label-free optical metabolic imaging in cells and tissues. Annual Review of Biomedical Engineering 25, 413-443 (2023). doi: 10.1146/annurev-bioeng-071516-044730 |
| [13] | Lakowicz, J. R., et al. Fluorescence lifetime imaging of free and protein-bound NADH. Proceedings of the National Academy of Sciences of the United States of America 89, 1271-1275 (1992). |
| [14] | Wang, H.-W., et al. Differentiation of apoptosis from necrosis by dynamic changes of reduced nicotinamide adenine dinucleotide fluorescence lifetime in live cells. Journal of Biomedical Optics 13, 054011 (2008). doi: 10.1117/1.2975831 |
| [15] | Schaefer, P. M., et al. NADH autofluorescence—a marker on its way to boost bioenergetic research. Cytometry Part A 95, 34-46 (2019). doi: 10.1002/cyto.a.23597 |
| [16] | Yu, J.-S., et al. Increase of reduced nicotinamide adenine dinucleotide fluorescence lifetime precedes mitochondrial dysfunction in staurosporine-induced apoptosis of HeLa cells. Journal of Biomedical Optics 16, 036008 (2011). doi: 10.1117/1.3560513 |
| [17] | Gorbunova, I. A., et al. Two-photon excited fluorescence dynamics in enzyme-bound NADH: the heterogeneity of fluorescence decay times and anisotropic relaxation. The Journal of Physical Chemistry B 125, 9692-9707 (2021). doi: 10.1021/acs.jpcb.1c04226 |
| [18] | Blacker, T. S. et al. Metabolic profiling of live cancer tissues using NAD(P)H fluorescence lifetime imaging. In Cancer Metabolism (ed Haznadar, M.) (New York: Humana Press, 2019). |
| [19] | Shirmanova, M. V. et al. Multiparametric analysis of cisplatin-induced changes in cancer cells using FLIM. Proceedings of Multiphoton Microscopy in the Biomedical Sciences XVIII. San Francisco, California, United States: SPIE 10498, 1049807 (2018). |
| [20] | Snyder, G. A., et al. Two-photon fluorescence lifetime imaging microscopy of NADH metabolism in HIV-1 infected cells and tissues. Frontiers in Immunology 14, 1213180 (2023). doi: 10.3389/fimmu.2023.1213180 |
| [21] | Wang, H.-W., Wei, Y.-H. & Guo, H.-W. Reduced nicotinamide adenine dinucleotide (NADH) fluorescence for the detection of cell death. Anti-Cancer Agents in Medicinal Chemistry 9, 1012-1017 (2009). doi: 10.2174/187152009789377718 |
| [22] | Bryanskaya, E. O., et al. High levels of FAD autofluorescence indicate pathology preceding cell death. Biochimica et Biophysica Acta (BBA)-General Subjects 1868, 130520 (2024). doi: 10.1016/j.bbagen.2023.130520 |
| [23] | Reichert, D., et al. Flavin fluorescence lifetime and autofluorescence optical redox ratio for improved visualization and classification of brain tumors. Frontiers in Oncology 13, 1105648 (2023). doi: 10.3389/fonc.2023.1105648 |
| [24] | Sirotin, Y. B. & Das, A. Spatial relationship between flavoprotein fluorescence and the hemodynamic response in the primary visual cortex of alert macaque monkeys. Frontiers Neuroenergetics 2, 6 (2010). |
| [25] | Kalinina, S., et al. Bioenergetic alterations of metabolic redox coenzymes as NADH, FAD and FMN by means of fluorescence lifetime imaging techniques. International Journal of Molecular Sciences 22, 5952 (2021). doi: 10.3390/ijms22115952 |
| [26] | Gorbunova, I. A., et al. Two-photon excited fluorescence of NADH-alcohol dehydrogenase complex in a mixture with bacterial enzymes. Biomolecules 13, 256 (2023). doi: 10.3390/biom13020256 |
| [27] | Lemire, S., et al. Natural NADH and FAD autofluorescence as label-free biomarkers for discriminating subtypes and functional states of immune cells. International Journal of Molecular Sciences 23, 2338 (2022). doi: 10.3390/ijms23042338 |
| [28] | Wallrabe, H., et al. Segmented cell analyses to measure redox states of autofluorescent NAD(P)H, FAD & Trp in cancer cells by FLIM. Scientific Reports 8, 79 (2018). doi: 10.1038/s41598-017-18634-x |
| [29] | Sameni, S., et al. The phasor-FLIM fingerprints reveal shifts from OXPHOS to enhanced glycolysis in Huntington disease. Scientific Reports 6, 34755 (2016). doi: 10.1038/srep34755 |
| [30] | Warburg, O. On the origin of cancer cells. Science 123, 309-314 (1956). doi: 10.1126/science.123.3191.309 |
| [31] | Warburg, O. On respiratory impairment in cancer cells. Science 124, 269-270 (1956). doi: 10.1126/science.124.3215.269 |
| [32] | Wang, Z., et al. Spatial light interference microscopy (SLIM). Optics Express 19, 1016-1026 (2011). doi: 10.1364/OE.19.001016 |
| [33] | Wang, Z., et al. Topography and refractometry of nanostructures using spatial light interference microscopy. Optics Letters 35, 208-210 (2010). doi: 10.1364/OL.35.000208 |
| [34] | Belashov, A. V., et al. SLIM-assisted automatic cartography of cell death types and rates resulting from localized photodynamic treatment. Journal of the Optical Society of America A 41, C72-C81 (2024). doi: 10.1364/JOSAA.534241 |
| [35] | Girshovitz, P. & Shaked, N. T. Generalized cell morphological parameters based on interferometric phase microscopy and their application to cell life cycle characterization. Biomedical Optics Express 3, 1757-1773 (2012). doi: 10.1364/BOE.3.001757 |
| [36] | Belashov, A. V., et al. Photophysical, rotational and translational properties of Radachlorin photosensitizer upon binding to serum albumins. Biochimica et Biophysica Acta (BBA)-General Subjects 1868, 130546 (2024). doi: 10.1016/j.bbagen.2023.130546 |
| [37] | Beltukova, D. M., et al. Time-resolved phosphorescence analysis of singlet oxygen generation and Radachlorin/Ce6 triplet state quenching in solutions with albumin. Chemical Physics Letters 861, 141826 (2025). doi: 10.1016/j.cplett.2024.141826 |
| [38] | Lin, F., et al. Monitoring the endocytosis of bovine serum albumin based on the fluorescence lifetime of small squaraine dye in living cells. Biomedical Optics Express 11, 149-159 (2019). |
| [39] | Misquith, S., Coninck, S. W.-D. & Wattiaux, R. Uptake and intracellular transport in rat liver of formaldehyde-treated bovine serum albumin labelled with 125I-tyramine-cellobiose. European Journal of Biochemistry 174, 691-697 (1988). doi: 10.1111/j.1432-1033.1988.tb14153.x |
| [40] | Higuchi, Y., et al. Uptake characteristics of mannosylated and fucosylated bovine serum albumin in primary cultured rat sinusoidal endothelial cells and Kupffer cells. International Journal of Pharmaceutics 287, 147-154 (2004). doi: 10.1016/j.ijpharm.2004.08.021 |
| [41] | Belashov, A. V., et al. Photophysical properties of Radachlorin photosensitizer in solutions of different pH, viscosity and polarity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 305, 123480 (2024). doi: 10.1016/j.saa.2023.123480 |
| [42] | Zheng, J. Energy metabolism of cancer: Glycolysis versus oxidative phosphorylation (review). Oncology Letters 4, 1151-1157 (2012). doi: 10.3892/ol.2012.928 |
| [43] | Lakowicz, J. R. Principles of fluorescence spectroscopy. New York: Springer (2006). |
| [44] | Vasdekis, A. E. & Stephanopoulos, G. Review of methods to probe single cell metabolism and bioenergetics. Metabolic Engineering 27, 115-135 (2015). doi: 10.1016/j.ymben.2014.09.007 |
| [45] | Alam, S. R., et al. Investigation of mitochondrial metabolic response to doxorubicin in prostate cancer cells: an NADH, FAD and tryptophan FLIM assay. Scientific Reports 7, 10451 (2017). doi: 10.1038/s41598-017-10856-3 |
| [46] | Penjweini, R., et al. Single cell-based fluorescence lifetime imaging of intracellular oxygenation and metabolism. Redox Biology 34, 101549 (2020). doi: 10.1016/j.redox.2020.101549 |
| [47] | Zhikhoreva, A. A., et al. Significant difference in response of malignant tumor cells of individual patients to photodynamic treatment as revealed by digital holographic microscopy. Journal of Photochemistry and Photobiology, B: Biology 221, 112235 (2021). doi: 10.1016/j.jphotobiol.2021.112235 |