[1] Jackson, S. D. Towards high-power mid-infrared emission from a fibre laser. Nat. Photonics 6, 423-431 (2012). doi: 10.1038/nphoton.2012.149
[2] Jauregui, C., Limpert, J. & Tünnermann, A. High-power fibre lasers. Nat. Photonics 7, 861-867 (2013). doi: 10.1038/nphoton.2013.273
[3] Tokita, S. et al. Stable 10 W Er: ZBLAN fiber laser operating at 2.71-2.88 μm. Opt. Lett. 35, 3943-3945 (2010). doi: 10.1364/OL.35.003943
[4] Li, J., Hudson, D. D. & Jackson, S. D. High-power diode-pumped fiber laser operating at 3 µm. Opt. Lett. 36, 3642-3644 (2011). doi: 10.1364/OL.36.003642
[5] Fortin, V. et al. 30 W fluoride glass all-fiber laser at 2.94 μm. Opt. Lett. 40, 2882-2885 (2015). doi: 10.1364/OL.40.002882
[6] Crawford, S., Hudson, D. D. & Jackson, S. D. High-power broadly tunable 3 μm fiber laser for the measurement of optical fiber loss. IEEE Photonics J. 7, 1502309 (2015). http://ieeexplore.ieee.org/iel7/4563994/7093398/07102681.pdf
[7] Henderson-Sapir, O., Jackson, S. D. & Ottaway, D. J. Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser. Opt. Lett. 41, 1676-1679 (2016). doi: 10.1364/OL.41.001676
[8] Maes, F. et al. 5.6 W monolithic fiber laser at 355 μm. Opt. Lett. 42, 2054-2057 (2017). doi: 10.1364/OL.42.002054
[9] Woodward, R. I. et al. Watt-level dysprosium fiber laser at 3.15 μm with 73% slope efficiency. Opt. Lett. 43, 1471-1474 (2018). doi: 10.1364/OL.43.001471
[10] Majewski, M. R., Woodward, R. I. & Jackson, S. D. Dysprosium-doped ZBLAN fiber laser tunable from 2.8 to 3.4 μm, pumped at 1.7 μm. Opt. Lett. 43, 971-974 (2018). doi: 10.1364/OL.43.000971
[11] Aydin, Y. O. et al. Towards power scaling of 2.8 μm fiber lasers. Opt. Lett. 43, 4542-4545 (2018). doi: 10.1364/OL.43.004542
[12] Maes, F. et al. Room-temperature fiber laser at 3.92 μm. Optica 5, 761-764 (2018). doi: 10.1364/OPTICA.5.000761
[13] Maes, F. et al. 3.42 μm lasing in heavily-erbium-doped fluoride fibers. Opt. Express 27, 2170-2183 (2019). doi: 10.1364/OE.27.002170
[14] Fortin, V. et al. 10-W-level monolithic dysprosium-doped fiber laser at 3.24 μm. Opt. Lett. 44, 491-494 (2019). doi: 10.1364/OL.44.000491
[15] Shiryaev, V. S. et al. Core-clad terbium doped chalcogenide glass fiber with laser action at 5.38 μm. J. Non-Crystalline Solids 567, 120939 (2021). doi: 10.1016/j.jnoncrysol.2021.120939
[16] Pryamikov, A. D. et al. Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm. Opt. Express 19, 1441-1448 (2011). doi: 10.1364/OE.19.001441
[17] Yu, F., Wadsworth, W. J. & Knight, J. C. Low loss silica hollow core fibers for 3-4 μm spectral region. Opt. Express 20, 11153-11158 (2012). doi: 10.1364/OE.20.011153
[18] Yu, F. & Knight, J. C. Negative curvature hollow-core optical fiber. IEEE J. Sel. Top. Quantum Electron. 22, 4400610 (2016).
[19] Ding, W. et al. Recent progress in low-loss hollow-core anti-resonant fibers and their applications. IEEE J. Sel. Top. Quantum Electron. 26, 4400312 (2020). http://d.wanfangdata.com.cn/periodical/31c395a9da8036019d731d53455e5c00
[20] Jones, A. M. et al. Mid-infrared gas filled photonic crystal fiber laser based on population inversion. Opt. Express 19, 2309-2316 (2011). doi: 10.1364/OE.19.002309
[21] Nampoothiri, A. V. V. et al. Hollow-core optical fiber gas lasers (HOFGLAS): A review [Invited]. Optical Mater. Express 2, 948-961 (2012). doi: 10.1364/OME.2.000948
[22] Jones, A. M. et al. Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers. In Proceedings of SPIE 8237, Fiber Lasers IX 82373Y (SPIE, San Francisco, USA, 2012).
[23] Cregan, R. F. et al. Single-mode photonic band gap guidance of light in air. Science 285, 1537-1539 (1999). doi: 10.1126/science.285.5433.1537
[24] Russell, P. S. J. et al. Hollow-core photonic crystal fibres for gas-based nonlinear optics. Nat. Photonics 8, 278-286 (2014). doi: 10.1038/nphoton.2013.312
[25] Yang, F., Gyger, F. & Thévenaz, L. Intense Brillouin amplification in gas using hollow-core waveguides. Nat. Photonics 14, 700-708 (2020). doi: 10.1038/s41566-020-0676-z
[26] Gladyshev, A. V. et al. 2.9, 3.3, and 3.5 μm Raman lasers based on revolver hollow-core silica fiber filled by 1H2/D2 Gas Mixture. IEEE J. Sel. Top. Quantum Electron. 24, 0903008 (2018). http://ieeexplore.ieee.org/iel7/2944/4481213/08304624.pdf
[27] Li, Z. X. et al. Efficient mid-infrared cascade Raman source in methane-filled hollow-core fibers operating at 2.8 μm. Opt. Lett. 43, 4671-4674 (2018). doi: 10.1364/OL.43.004671
[28] Gladyshev, A. V. et al. 4.4-μm Raman laser based on hollow-core silica fibre. Quantum Electron. 47, 491-494 (2017). doi: 10.1070/QEL16400
[29] Astapovich, M. S. et al. Watt-level nanosecond 4.42 μm Raman laser based on silica fiber. IEEE Photonics Technol. Lett. 31, 78-81 (2019). doi: 10.1109/LPT.2018.2883919
[30] Aghbolagh, F. B. A. et al. Mid IR hollow core fiber gas laser emitting at 4.6 μm. Opt. Lett. 44, 383-386 (2019). doi: 10.1364/OL.44.000383
[31] Wang, Z. F. et al. Efficient diode-pumped mid-infrared emission from acetylene-filled hollow-core fiber. Opt. Express 22, 21872-21878 (2014). doi: 10.1364/OE.22.021872
[32] Hassan, M. R. A. et al. Cavity-based mid-IR fiber gas laser pumped by a diode laser. Optica 3, 218-221 (2016). doi: 10.1364/OPTICA.3.000218
[33] Xu, M. R., Yu, F. & Knight, J. Mid-infrared 1 W hollow-core fiber gas laser source. Opt. Lett. 42, 4055-4058 (2017). doi: 10.1364/OL.42.004055
[34] Dadashzadeh, N. et al. Near diffraction-limited performance of an OPA pumped acetylene-filled hollow-core fiber laser in the mid-IR. Opt. Express 25, 13351-13358 (2017). doi: 10.1364/OE.25.013351
[35] Zhou, Z. Y. et al. High-power tunable mid-infrared fiber gas laser source by acetylene-filled hollow-core fibers. Opt. Express 26, 19144-19153 (2018). doi: 10.1364/OE.26.019144
[36] Xu, M. R. et al. Continuous-wave mid-Infrared gas fiber lasers. IEEE J. Sel. Top. Quantum Electron. 24, 0902308 (2018).
[37] Cui, Y. L. et al. 4.3 μm fiber laser in CO2-filled hollow-core silica fibers. Optica 6, 951-954 (2019). doi: 10.1364/OPTICA.6.000951
[38] Miller, H. C., Radzykewycz, D. T. & Hager, G. An optically pumped mid-infrared HBr laser. IEEE J. Quantum Electron. 30, 2395-2400 (1994). doi: 10.1109/3.328612
[39] Kletecka, C. S. et al. Cascade lasing of molecular HBr in the four micron region pumped by a Nd: YAG laser. IEEE J. Quantum Electron. 40, 1471-1477 (2004). doi: 10.1109/JQE.2004.834565
[40] Botha, L. R. et al. Ho: YLF pumped HBr laser. Opt. Express 17, 20615-20622 (2009). doi: 10.1364/OE.17.020615
[41] Koen, W. et al. Optically pumped tunable HBr laser in the mid-infrared region. Opt. Lett. 39, 3563-3566 (2014). doi: 10.1364/OL.39.003563
[42] Koen, W. et al. Optically pumped HBr master oscillator power amplifier operating in the mid-infrared region. J. Optical Soc. Am. B 37, A154-A162 (2020).
[43] Rothman, L. S. et al. HITRAN spectroscopic database. https://hitran.iao.ru/bands/simlaunch?mol=16 (2013)
[44] Banwell, C. N. Fundamentals of Molecular Spectroscopy 2nd edn (McGraw-Hill, 1972).
[45] Selleri, S. et al. Complex FEM modal solver of optical waveguides with PML boundary conditions. Optical Quantum Electron. 33, 359-371 (2001). doi: 10.1023/A:1010886632146
[46] Chen, Y. B. et al. Ultra-efficient Raman amplifier in methane-filled hollow-core fiber operating at 1.5 μm. Opt. Express 25, 20944-20949 (2017). doi: 10.1364/OE.25.020944
[47] Lane, R. A. & Madden, T. J. Numerical investigation of pulsed gas amplifiers operating in hollow-core optical fibers. Opt. Express 26, 15693-15704 (2018). doi: 10.1364/OE.26.015693
[48] Ratanavis, A. et al. Performance and spectral tuning of optically overtone pumped molecular lasers. IEEE J. Quantum Electron. 45, 488-498 (2009). doi: 10.1109/JQE.2009.2013095
[49] Benabid, F. et al. Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres. Nature 434, 488-491 (2005). doi: 10.1038/nature03349
[50] Xie, S., Pennetta, R. & Russell, P. S. J. Self-alignment of glass fiber nanospike by optomechanical back-action in hollow-core photonic crystal fiber. Optica 3, 277-282 (2016). doi: 10.1364/OPTICA.3.000277
[51] Yu, R. W. et al. Robust mode matching between structurally dissimilar optical fiber waveguides. ACS Photonics 8, 857-863 (2021). doi: 10.1021/acsphotonics.0c01859
[52] Carcreff, J. et al. Mid-infrared hollow core fiber drawn from a 3D printed chalcogenide glass preform. Optical Mater. Express 11, 198-209 (2021). doi: 10.1364/OME.415090