[1] Dalibard, J. et al. Colloquium: artificial gauge potentials for neutral atoms. Rev. Mod. Phys. 83, 1523–1543 (2011). doi: 10.1103/RevModPhys.83.1523
[2] Aidelsburger, M., Nascimbene, S. & Goldman, N. Artificial gauge fields in materials and engineered systems. Comptes Rendus Phys. 19, 394–432 (2018). doi: 10.1016/j.crhy.2018.03.002
[3] Umucalılar, R. O. & Carusotto, I. Artificial gauge field for photons in coupled cavity arrays. Phys. Rev. A 84, 043804 (2011). doi: 10.1103/PhysRevA.84.043804
[4] Rechtsman, M. C. et al. Strain-induced pseudomagnetic field and photonic Landau levels in dielectric structures. Nat. Photon. 7, 153–158 (2013). doi: 10.1038/nphoton.2012.302
[5] Lumer, Y. et al. Light guiding by artificial gauge fields. Nat. Photon. 13, 339–345 (2019). doi: 10.1038/s41566-019-0370-1
[6] Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008). doi: 10.1103/PhysRevLett.100.013904
[7] Wang, Z. et al. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009). doi: 10.1038/nature08293
[8] Hafezi, M. et al. Robust optical delay lines with topological protection. Nat. Phys. 7, 907–912 (2011). doi: 10.1038/nphys2063
[9] Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013). doi: 10.1038/nature12066
[10] Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019). doi: 10.1103/RevModPhys.91.015006
[11] Fang, K. J., Yu, Z. F. & Fan, S. H. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photon. 6, 782–787 (2012). doi: 10.1038/nphoton.2012.236
[12] Goldman, N. & Dalibard, J. Periodically driven quantum systems: effective Hamiltonians and engineered gauge fields. Phys. Rev. X 4, 031027 (2014). doi: 10.1103/PhysRevX.4.031027
[13] Jörg, C. et al. Dynamic defects in photonic Floquet topological insulators. New J. Phys. 19, 083003 (2017). doi: 10.1088/1367-2630/aa7c82
[14] Wu, L. H. & Hu, X. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett. 114, 223901 (2015). doi: 10.1103/PhysRevLett.114.223901
[15] Shen, Y. J. et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light. Sci. Appl. 8, 90 (2019). doi: 10.1038/s41377-019-0194-2
[16] Pelegrí, G. et al. Topological edge states and Aharanov-Bohm caging with ultracold atoms carrying orbital angular momentum. Phys. Rev. A 99, 023613 (2019). doi: 10.1103/PhysRevA.99.023613
[17] Pelegrí, G. et al. Topological edge states with ultracold atoms carrying orbital angular momentum in a diamond chain. Phys. Rev. A 99, 023612 (2019). doi: 10.1103/PhysRevA.99.023612
[18] Vidal, J., Mosseri, R. & Douçot, B. Aharonov-Bohm cages in two-dimensional structures. Phys. Rev. Lett. 81, 5888–5891 (1998). doi: 10.1103/PhysRevLett.81.5888
[19] Vidal, J. et al. Interaction induced delocalization for two particles in a periodic potential. Phys. Rev. Lett. 85, 3906–3909 (2000). doi: 10.1103/PhysRevLett.85.3906
[20] Longhi, S. Aharonov–Bohm photonic cages in waveguide and coupled resonator lattices by synthetic magnetic fields. Opt. Lett. 39, 5892–5895 (2014). doi: 10.1364/OL.39.005892
[21] Mukherjee, S. & Thomson, R. R. Observation of localized flat-band modes in a quasi-one-dimensional photonic rhombic lattice. Opt. Lett. 40, 5443–5446 (2015). doi: 10.1364/OL.40.005443
[22] Fang, K. J., Yu, Z. F. & Fan, S. H. Photonic Aharonov-Bohm effect based on dynamic modulation. Phys. Rev. Lett. 108, 153901 (2012). doi: 10.1103/PhysRevLett.108.153901
[23] Mukherjee, S. et al. Experimental observation of Aharonov-Bohm cages in photonic lattices. Phys. Rev. Lett. 121, 075502 (2018). doi: 10.1103/PhysRevLett.121.075502
[24] Kremer, M. et al. A square-root topological insulator with non-quantized indices realized with photonic Aharonov-Bohm cages. Nat. Commun. 11, 907 (2020). doi: 10.1038/s41467-020-14692-4
[25] Liu, F. et al. Polarization beam splitting with gauge field metamaterials. Adv. Opt. Mater. 7, 1801582 (2019). doi: 10.1002/adom.201801582
[26] Hadad, Y., Khanikaev, A. B. & Alù, A. Self-induced topological transitions and edge states supported by nonlinear staggered potentials. Phys. Rev. B 93, 155112 (2016). doi: 10.1103/PhysRevB.93.155112
[27] Jörg, C. Interfaces And Defects In Topological Model Systems Of 3d Micro-printed Waveguides. PhD thesis, Technische Universität Kaiserslautern, Kaiserslautern (2019).
[28] Turpin, A. et al. Engineering of orbital angular momentum supermodes in coupled optical waveguides. Sci. Rep. 7, 44057 (2017). doi: 10.1038/srep44057
[29] Polo, J., Mompart, J. & Ahufinger, V. Geometrically induced complex tunnelings for ultracold atoms carrying orbital angular momentum. Phys. Rev. A 93, 033613 (2016). doi: 10.1103/PhysRevA.93.033613
[30] Keil, R. et al. Direct measurement of second-order coupling in a waveguide lattice. Appl. Phys. Lett. 107, 241104 (2015). doi: 10.1063/1.4937807
[31] Willner, A. E. et al. Optical communications using orbital angular momentum beams. Adv. Opt. Photon. 7, 66–106 (2015). doi: 10.1364/AOP.7.000066
[32] Chen, Y. et al. Mapping twisted light into and out of a photonic chip. Phys. Rev. Lett. 121, 233602 (2018). doi: 10.1103/PhysRevLett.121.233602
[33] Hohmann, J. K. et al. Three-dimensional μ-printing: an enabling technology. Adv. Opt. Mater. 3, 1488–1507 (2015). doi: 10.1002/adom.201500328
[34] Waller, E. H. & von Freymann, G. Spatio-temporal proximity characteristics in 3D μ-printing via multi-photon absorption. Polymers 8, 297 (2016). doi: 10.3390/polym8080297