[1] |
Maruo, S., Nakamura, O., & Kawata, S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Optics letters 22, 132-134 (1997). doi: 10.1364/OL.22.000132 |
[2] |
Yang, L., et al. Multi-material multi-photon 3D laser micro- and nanoprinting. Light: Advanced Manufacturing 2, 1-17 (2021). |
[3] |
Rill, M. S., et al. Photonic metamaterials by direct laser writing and silver chemical vapour deposition. Nature materials 7, 543-546 (2008). doi: 10.1038/nmat2197 |
[4] |
Lucas, R. M., Satyajit, D., & Julia, R. G. Strong lightweight and recoverable three-dimensional ceramic nanolattices. Science 345, 1322-1326 (2014). doi: 10.1126/science.1255908 |
[5] |
Yu, H., Zhang, Q. M., & Gu, M. Three-dimensional direct laser writing of biomimetic neuron structures. Optics express 26, 32111-32117 (2018). doi: 10.1364/OE.26.032111 |
[6] |
Gissibl, T., et al. Two-photon direct laser writing of ultracompact multi-lens objectives. Nature Photonics 10, 554-560 (2016). doi: 10.1038/nphoton.2016.121 |
[7] |
Thiele, S., et al. 3D-printed eagle eye: Compound microlens system for foveated imaging. Science Advances 3, e1602655 (2017). doi: 10.1126/sciadv.1602655 |
[8] |
Lindenmann, N., et al. Photonic wire bonding: a novel concept for chip-scale interconnects. Optics express 20, 17667-17677 (2012). doi: 10.1364/OE.20.017667 |
[9] |
Blaicher, M., et al. Hybrid multi-chip assembly of optical communication engines by In-situ 3D nano-lithography. Light: Science & Applications 9, 71 (2020). |
[10] |
Waller, E. H. & Freymann, G. V. Spatiotemporal proximity characteristics in 3D μ-printing via multi-photon absorption. Polymers 8, 297 (2016). doi: 10.3390/polym8080297 |
[11] |
Kern, C. F. On the Hall effect in threedimensional metamaterials. PhD thesis, Karlsruher Institut für Technologie (KIT), 2019. |
[12] |
Jiang, L. J., et al. Performance comparison of acrylic and thiol-acrylic resins in two-photon polymerization. Optics express 24, 13687-13701 (2016). doi: 10.1364/OE.24.013687 |
[13] |
Pikulin, A. & Bityurin, N. Spatial resolution in polymerization of sample features at nanoscale. Physical Review B 75, 195430 (2007). doi: 10.1103/PhysRevB.75.195430 |
[14] |
Hahn, V., et al. Two-step absorption instead of two-photon absorption in 3D nanoprinting. Nature Photonics 15, 932-938 (2021). doi: 10.1038/s41566-021-00906-8 |
[15] |
Ziemczonok, M., et al. 3D-printed biological cell phantom for testing 3D quantitative phase imaging systems. Scientific reports 9, 18892 (2019). doi: 10.1038/s41598-019-55445-8 |
[16] |
Saha, S. K., et al. Radiopaque resists for two-photon lithography to enable submicron 3D imaging of polymer parts via x-ray computed tomography. ACS Applied Materials & Interfaces 10, 1164-1172 (2018). |
[17] |
Mayer, F., et al. 3D fluorescence-based security features by 3D laser lithography. Advanced Materials Technologies 2, 1700212 (2017). doi: 10.1002/admt.201700212 |
[18] |
Qu, J., et al. Experiments on metamaterials with negative effective static compressibility. Physical Review X 7, 041060 (2017). doi: 10.1103/PhysRevX.7.041060 |
[19] |
Weber, K., et al. Single mode fiber based delivery of oam light by 3D direct laser writing. Optics express 25, 19672-19679 (2017). doi: 10.1364/OE.25.019672 |
[20] |
Lamont, A. C., et al. Direct laser writing of a titanium dioxide-laden retinal cone phantom for adaptive optics-optical coherence tomography. Optical Materials Express 10, 2757-2767 (2020). doi: 10.1364/OME.400450 |
[21] |
Safronov, K. R., et al. Miniature otto prism coupler for integrated photonics. Laser & Photonics Reviews 16, 2100542 (2022). |
[22] |
Guo, R., et al. Micro lens fabrication by means of femtosecond two photon photopolymerization. Optics express 14, 810-816 (2006). doi: 10.1364/OPEX.14.000810 |
[23] |
Lee, X. Y., et al. Automated detection of part quality during two-photon lithography via deep learning. Additive Manufacturing 36, 101444 (2020). doi: 10.1016/j.addma.2020.101444 |
[24] |
Baldacchini, T. & Zadoyan, R. In-situ and real time monitoring of two-photon polymerization using broadband coherent anti-stokes raman scattering microscopy. Optics express 18, 19219-19231 (2010). doi: 10.1364/OE.18.019219 |
[25] |
Schmid, M., Ludescher, D. & Giessen, H. Optical properties of photoresists for femtosecond 3D printing: refractive index, extinction, luminescence-dose dependence, aging, heat treatment and comparison between 1-photon and 2-photon exposure. Optical Materials Express 9, 4564-4577 (2019). doi: 10.1364/OME.9.004564 |
[26] |
Wojtkowski, M., et al. Ultrahigh-resolution, high-speed, fourier domain optical coherence tomography and methods for dispersion compensation. Optics express 12, 2404-2422 (2004). doi: 10.1364/OPEX.12.002404 |
[27] |
Yang, S. S., et al. In-situ process monitoring and automated multi-parameter evaluation using optical coherence tomography during extrusion-based bioprinting. Additive Manufacturing 47, 102251 (2021). doi: 10.1016/j.addma.2021.102251 |
[28] |
Tashman, J. W., et al. In-situ volumetric imaging and analysis of fresh 3d bioprinted constructs using optical coherence tomography. bioRxiv, 2021. |
[29] |
Guan, G. Y., et al. Evaluation of selective laser sintering processes by optical coherence tomography. Materials & Design 88, 837-846 (2015). |
[30] |
Gardner, M. R., et al. In-situ process monitoring in selective laser sintering using optical coherence tomography. Optical Engineering 57, 041407 (2018). |
[31] |
DePond, P. J., et al. In-situ measurements of layer roughness during laser powder bed fusion additive manufacturing using low coherence scanning interferometry. Materials & Design 154, 347-359 (2018). |
[32] |
Dong, B. & Pan, B. Visualizing curing process inside polymers. Applied Physics Letters 116, 054103 (2020). doi: 10.1063/1.5141827 |
[33] |
Drexler, W. & Fujimoto, J. G. Optical Coherence Tomography: Technology and Applications/edited by Wolfgang Drexler, James G. Fujimoto. 2015. |
[34] |
Izatt, J. A., et al. Optical coherence microscopy in scattering media. Optics letters 19, 590-592 (1994). doi: 10.1364/OL.19.000590 |
[35] |
Agrawal, A., et al. Methods to assess sensitivity of optical coherence tomography systems. Biomedical optics express 8, 902-917 (2017). doi: 10.1364/BOE.8.000902 |
[36] |
Mueller, J. B., et al. In-situ local temperature measurement during three-dimensional direct laser writing. Applied Physics Letters 103, 123107 (2013). doi: 10.1063/1.4821556 |
[37] |
Malitson, I. H. Interspecimen comparison of the refractive index of fused silica. Journal of the Optical Society of America 55, 1205-1209 (1965). doi: 10.1364/JOSA.55.001205 |
[38] |
Ip-dip tables–nanoscribe nanoguide. https://support.nanoscribe.com/hc/en-gb/articles/360009156293#T:IPDipRIndex. |
[39] |
Dottermusch, S., et al. Exposure-dependent refractive index of nanoscribe ipdip photoresist layers. Optics letters 44, 29-32 (2019). doi: 10.1364/OL.44.000029 |
[40] |
Howard, B., et al. Relationships between conversion, temperature and optical properties during composite photopolymerization. Acta biomaterialia 6, 2053-2059 (2010). doi: 10.1016/j.actbio.2009.11.006 |
[41] |
Bauer, J., et al. Programmable mechanical properties of two-photon polymerized materials: From nanowires to bulk. Advanced Materials Technologies 4, 1900146 (2019). doi: 10.1002/admt.201900146 |
[42] |
Porte, X., et al. Direct (3+1)D laser writing of graded-index optical elements. Optica 8, 1281-1287 (2021). |
[43] |
Rees, W. G. Physical principles of remote sensing. Cambridge: Cambridge university press (2013). |
[44] |
Liu, L. B., et al. Method for quantitative study of airway functional microanatomy using micro-optical coherence tomography. PloS one 8, e54473 (2013). doi: 10.1371/journal.pone.0054473 |
[45] |
Tan, B. Y., et al. 250 khz, 1.5 μm resolution SD-OCT for in-vivo cellular imaging of the human cornea. Biomedical optics express 9, 6569-6583 (2018). doi: 10.1364/BOE.9.006569 |
[46] |
Mishchenko, M. I., Travis, L. D. & Mackowski, D. W. T-matrix computations of light scattering by nonspherical particles: A review. Journal of Quantitative Spectroscopy and Radiative Transfer 55, 535-575 (1996). doi: 10.1016/0022-4073(96)00002-7 |
[47] |
Richards, B. & Wolf, E. Electromagnetic diffraction in optical systems, Ⅱ. Structure of the image field in an aplanatic system. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 253, 358-379 (1959). |
[48] |
Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles. Wiley: Hoboken (1998). |
[49] |
Divitt, S. jreftran - a layered thin film transmission and reflection coefficient calculator. https://www.mathworks.com/matlabcentral/fileexchange/50923-jreftran-a-layered-thin-film/-transmission-and-reflection-coefficient/-calculator. |