[1] Miller, S. E. Integrated optics: an introduction. Bell Syst. Tech. J. 48, 2059-2069 (1969). doi: 10.1002/j.1538-7305.1969.tb01165.x
[2] Smit, M., Williams, K. & van der Tol, J. Past, present, and future of inp-based photonic integration. APL Photonics 4, 050901 (2019). doi: 10.1063/1.5087862
[3] Harris, N. C. et al. Linear programmable nanophotonic processors. Optica 5, 1623-1631 (2018). doi: 10.1364/OPTICA.5.001623
[4] Bogaerts, W. et al. Programmable photonic circuits. Nature 586, 207-216 (2020). doi: 10.1038/s41586-020-2764-0
[5] Marpaung, D., Yao, J. P. & Capmany, J. Integrated microwave photonics. Nat. Photonics 13, 80-90 (2019).
[6] Chen, X. et al. The emergence of silicon photonics as a flexible technology platform. Proc. IEEE 106, 2101-2116 (2018). doi: 10.1109/JPROC.2018.2854372
[7] Lu, X. Y. et al. Efficient photoinduced second-harmonic generation in silicon nitride photonics. Nat. Photoni. https://doi.org/10.1038/s41566-020-00708-4 (2020).
[8] Shi, J. J. et al. Efficient second harmonic generation in a hybrid plasmonic waveguide by mode interactions. Nano Lett. 19, 3838-3845 (2019). doi: 10.1021/acs.nanolett.9b01004
[9] Wang, C. et al. Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides. Nat. Commun. 8, 2098 (2017). doi: 10.1038/s41467-017-02189-6
[10] Li, Z. et al. Direct visualization of phase-matched efficient second harmonic and broadband sum frequency generation in hybrid plasmonic nanostructures. Light. : Sci. Appl. 9, 180 (2020). doi: 10.1038/s41377-020-00414-4
[11] Liu, N. et al. Lithographically defined, room temperature low threshold subwavelength red-emitting hybrid plasmonic lasers. Nano Lett. 16, 7822-7828 (2016). doi: 10.1021/acs.nanolett.6b04017
[12] Savo, R. et al. Broadband mie driven random quasi-phase-matching. Nat. Photonics 14, 740-747 (2020). doi: 10.1038/s41566-020-00701-x