[1] Ulichney, R. A. Void-and-cluster method for dither array generation. Proceedings of SPIE 1913, Human Vision, Visual Processing, and Digital Display IV. San Jose: SPIE, 1993.
[2] Swainson, W. K. DE1797599(A1), 1974.
[3] Hull, C. W. Patent history. (1986).
[4] Kodama, H. Automatic method for fabricating a three-dimensional plastic model with photo-hardening polymer. Review of Scientific Instruments 52, 1770-1773 (1981). doi: 10.1063/1.1136492
[5] Maruo, S., Nakamura, O. & Kawata, S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Optics Letters 22, 132-134 (1997). doi: 10.1364/OL.22.000132
[6] Hahn, V. et al. Rapid assembly of small materials building blocks (Voxels) into large functional 3D metamaterials. Advanced Functional Materials 30, 1907795 (2020). doi: 10.1002/adfm.201907795
[7] Hahn, V. et al. 3-D laser nanoprinting. Optics and Photonics News 30, 28-35 (2019).
[8] Fischer, J. & Wegener, M. Three-dimensional optical laser lithography beyond the diffraction limit. Laser & Photonics Reviews 7, 22-44 (2013).
[9] Gan, Z. S., Turner, M. D. & Gu, M. Biomimetic gyroid nanostructures exceeding their natural origins. Science Advances 2, e1600084 (2016). doi: 10.1126/sciadv.1600084
[10] Hentschel, M. et al. Chiral plasmonics. Science Advances 3, e1602735 (2017). doi: 10.1126/sciadv.1602735
[11] Thiel, M. et al. Dip-in depletion optical lithography of three-dimensional chiral polarizers. Optics Letters 38, 4252-4255 (2013). doi: 10.1364/OL.38.004252
[12] Ergin, T., Fischer, J. & Wegener, M. Optical phase cloaking of 700 nm light waves in the far field by a three-dimensional carpet cloak. Physical Review Letters 107, 173901 (2011). doi: 10.1103/PhysRevLett.107.173901
[13] Kadic, M. et al. 3D metamaterials. Nature Reviews Physics 1, 198-210 (2019). doi: 10.1038/s42254-018-0018-y
[14] Ren, X. et al. Auxetic metamaterials and structures: a review. Smart Materials and Structures 27, 023001 (2018). doi: 10.1088/1361-665X/aaa61c
[15] Surjadi, J. U. et al. Mechanical metamaterials and their engineering applications. Advanced Engineering Materials 21, 1800864 (2019). doi: 10.1002/adem.201800864
[16] Eder, M., Amini, S. & Fratzl, P. Biological composites—complex structures for functional diversity. Science 362, 543-547 (2018). doi: 10.1126/science.aat8297
[17] Kiefer, P. et al. Sensitive photoresists for rapid multiphoton 3D laser micro- and nanoprinting. Advanced Optical Materials 8, 2000895 (2020). doi: 10.1002/adom.202000895
[18] Sun, H. B. et al. Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization. Applied Physics Letters 83, 819-821 (2003). doi: 10.1063/1.1598293
[19] Mueller, J. B. et al. Polymerization kinetics in three-dimensional direct laser writing. Advanced Materials 26, 6566-6571 (2014). doi: 10.1002/adma.201402366
[20] Yang, L. et al. On the schwarzschild effect in 3D two-photon laser lithography. Advanced Optical Materials 7, 1901040 (2019). doi: 10.1002/adom.201901040
[21] Ma, Z. C. et al. Femtosecond-laser direct writing of metallic micro/nanostructures: from fabrication strategies to future applications. Small Methods 2, 1700413 (2018). doi: 10.1002/smtd.201700413
[22] Saha, S. K. et al. Scalable submicrometer additive manufacturing. Science 366, 105-109 (2019). doi: 10.1126/science.aax8760
[23] Tudor, A. et al. Fabrication of soft, stimulus-responsive structures with sub-micron resolution via two-photon polymerization of poly(ionic liquid)s. Materials Today 21, 807-816 (2018). doi: 10.1016/j.mattod.2018.07.017
[24] Wei, S. X. et al. Protein-based 3D microstructures with controllable morphology and pH-responsive properties. ACS Applied Materials & Interfaces 9, 42247-42257 (2017).
[25] Lv, C. et al. Humidity-responsive actuation of programmable hydrogel microstructures based on 3D printing. Sensors and Actuators B: Chemical 259, 736-744 (2018). doi: 10.1016/j.snb.2017.12.053
[26] Lay, C. L. et al. Transformative two-dimensional array configurations by geometrical shape-shifting protein microstructures. ACS Nano 9, 9708-9717 (2015). doi: 10.1021/acsnano.5b04300
[27] Lee, M. R. et al. Shape-shifting 3D Protein microstructures with programmable directionality via quantitative nanoscale stiffness modulation. Small 11, 740-748 (2015). doi: 10.1002/smll.201401343
[28] Marino, A. et al. Biomimicry at the nanoscale: current research and perspectives of two-photon polymerization. Nanoscale 7, 2841-2850 (2015). doi: 10.1039/C4NR06500J
[29] Ovsianikov, A. et al. Engineering 3D cell-culture matrices: multiphoton processing technologies for biological and tissue engineering applications. Expert Review of Medical Devices 9, 613-633 (2012). doi: 10.1586/erd.12.48
[30] Soukoulis, C. M. & Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photonics 5, 523-530 (2011). doi: 10.1038/nphoton.2011.154
[31] Qu, J. Y. et al. Micro-structured two-component 3D metamaterials with negative thermal-expansion coefficient from positive constituents. Scientific Reports 7, 40643 (2017). doi: 10.1038/srep40643
[32] Kern, C., Kadic, M. & Wegener, M. Experimental evidence for sign reversal of the hall coefficient in three-dimensional metamaterials. Physical Review Letters 118, 016601 (2017). doi: 10.1103/PhysRevLett.118.016601
[33] Frenzel, T., Kadic, M. & Wegener, M. Three-dimensional mechanical metamaterials with a twist. Science 358, 1072-1074 (2017). doi: 10.1126/science.aao4640
[34] Gissibl, T. et al. Two-photon direct laser writing of ultracompact multi-lens objectives. Nature Photonics 10, 554-560 (2016). doi: 10.1038/nphoton.2016.121
[35] Schumann, M. F. et al. Cloaked contact grids on solar cells by coordinate transformations: designs and prototypes. Optica 2, 850-853 (2015). doi: 10.1364/OPTICA.2.000850
[36] Yang, L. et al. Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator. Optics and Lasers in Engineering 70, 26-32 (2015).
[37] Vizsnyiczai, G. et al. Light controlled 3D micromotors powered by bacteria. Nature Communications 8, 15974 (2017). doi: 10.1038/ncomms15974
[38] Huang, T. Y. et al. 3D printed microtransporters: compound micromachines for spatiotemporally controlled delivery of therapeutic agents. Advanced Materials 27, 6644-6650 (2015). doi: 10.1002/adma.201503095
[39] Ceylan, H., Yasa, I. C. & Sitti, M. 3D chemical patterning of micromaterials for encoded functionality. Advanced Materials 29, 1605072 (2017). doi: 10.1002/adma.201605072
[40] Röhrig, M. et al. 3D direct laser writing of nano- and microstructured hierarchical gecko-mimicking surfaces. Small 8, 3009-3015 (2012). doi: 10.1002/smll.201200308
[41] Liu, X. J. et al. 3D printing of bioinspired liquid superrepellent structures. Advanced Materials 30, 1800103 (2018). doi: 10.1002/adma.201800103
[42] Dong, Z. Q. et al. Superoleophobic slippery lubricant-infused surfaces: combining two extremes in the same surface. Advanced Materials 30, 1803890 (2018). doi: 10.1002/adma.201803890
[43] Shi, Q. et al. Wiring up pre-characterized single-photon emitters by laser lithography. Scientific Reports 6, 31135 (2016). doi: 10.1038/srep31135
[44] Scordo, G. et al. A novel highly electrically conductive composite resin for stereolithography. Materials Today Communications 19, 12-17 (2019). doi: 10.1016/j.mtcomm.2018.12.017
[45] Greco, F. et al. Ultra-thin conductive free-standing PEDOT/PSS nanofilms. Soft Matter 7, 10642-10650 (2011). doi: 10.1039/c1sm06174g
[46] Kurselis, K. et al. 3D fabrication of all-polymer conductive microstructures by two photon polymerization. Optics Express 21, 31029-31035 (2013). doi: 10.1364/OE.21.031029
[47] Yamada, K., Yamada, Y. & Sone, J. Three-dimensional photochemical microfabrication of poly(3, 4-ethylene- dioxythiophene) in transparent polymer sheet. Thin Solid Films 554, 102-105 (2014). doi: 10.1016/j.tsf.2013.08.023
[48] Skotheim, T.A. & Reynolds, J. R. Handbook of Conducting Polymers. (London: CRC Press, 2007).
[49] Chandrasekhar, P. Conducting Polymers, Fundamentals and Applications: A Practical Approach. (Boston: Springer, 1999).
[50] Agarwal, N. et al. Direct writing of a conducting polymer pattern in aqueous solution by using an ultrashort laser pulse. RSC Advances 7, 38565-38569 (2017). doi: 10.1039/C7RA05195F
[51] Ishikawa, A., Tanaka, T. & Kawata, S. Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye. Applied Physics Letters 89, 113102 (2006). doi: 10.1063/1.2345601
[52] Cao, Y. Y. et al. 3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction. Small 5, 1144-1148 (2009).
[53] Blasco, E. et al. Fabrication of conductive 3D gold-containing microstructures via direct laser writing. Advanced Materials 28, 3592-3595 (2016). doi: 10.1002/adma.201506126
[54] Shukla, S. et al. Two-photon lithography of sub-wavelength metallic structures in a polymer matrix. Advanced Materials 22, 3695-3699 (2010). doi: 10.1002/adma.201000059
[55] Zarzar, L. D. et al. Multiphoton lithography of nanocrystalline platinum and palladium for site-specific catalysis in 3D microenvironments. Journal of the American Chemical Society 134, 4007-4010 (2012). doi: 10.1021/ja211602t
[56] Ma, Z. C. et al. Femtosecond laser direct writing of plasmonic Ag/Pd alloy nanostructuRes enables flexible integration of robust SERS substrates. Advanced Materials Technologies 2, 1600270 (2017). doi: 10.1002/admt.201600270
[57] Lee, M. R. et al. Direct metal writing and precise positioning of gold nanoparticles within microfluidic channels for SERS sensing of gaseous analytes. ACS Applied Materials & Interfaces 9, 39584-39593 (2017).
[58] Xu, B. B. et al. Flexible nanowiring of metal on nonplanar substrates by femtosecond-laser-induced electroless plating. Small 6, 1762-1766 (2010). doi: 10.1002/smll.201000511
[59] Tabrizi, S. et al. Functional optical plasmonic resonators fabricated via highly photosensitive direct laser reduction. Advanced Optical Materials 4, 529-533 (2016). doi: 10.1002/adom.201500568
[60] Mayer, F. et al. 3D two-photon microprinting of nanoporous architectures. Advanced Materials 32, 2002044 (2020). doi: 10.1002/adma.202002044
[61] Lindenmann, N. et al. Connecting silicon photonic circuits to multicore fibers by photonic wire bonding. Journal of Lightwave Technology 33, 755-760 (2015). doi: 10.1109/JLT.2014.2373051
[62] Wong, S. et al. Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses. Advanced Materials 18, 265-269 (2006). doi: 10.1002/adma.200501973
[63] Cumming, B. P. et al. Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate. Optics Express 19, 9419-9425 (2011). doi: 10.1364/OE.19.009419
[64] Ródenas, A. et al. Rare-earth spontaneous emission control in three-dimensional lithium niobate photonic crystals. Advanced Materials 21, 3526-3530 (2009). doi: 10.1002/adma.200803851
[65] Ovsianikov, A. et al. Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication. ACS Nano 2, 2257-2262 (2008). doi: 10.1021/nn800451w
[66] Sakellari, I. et al. Two-photon polymerization of titanium-containing sol-gel composites for three-dimensional structure fabrication. Applied Physics A 100, 359-364 (2010). doi: 10.1007/s00339-010-5864-0
[67] Kotz, F. et al. Two-photon polymerization of nanocomposites for the fabrication of transparent fused silica glass microstructures. Advanced Materials 33, 2006341 (2021). doi: 10.1002/adma.202006341
[68] Doualle, T., André, J. C. & Gallais, L. 3D printing of silica glass through a multiphoton polymerization process. Optics Letters 46, 364-367 (2021). doi: 10.1364/OL.414848
[69] Arita, R. et al. Rapid three-dimensional structuring of transparent SiO2 glass using interparticle photo-cross-linkable suspensions. Communications Materials 1, 30 (2020). doi: 10.1038/s43246-020-0029-y
[70] Ródenas, A. et al. Three-dimensional femtosecond laser nanolithography of crystals. Nature Photonics 13, 105-109 (2019). doi: 10.1038/s41566-018-0327-9
[71] Cooperstein, I. et al. 3D printing of micrometer-sized transparent ceramics with on-demand optical-gain properties. Advanced Materials 32, 2001675 (2020). doi: 10.1002/adma.202001675
[72] Hippler, M. et al. 3D scaffolds to study basic cell biology. Advanced Materials 31, 1808110 (2019). doi: 10.1002/adma.201808110
[73] Zhou, W. H. et al. An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication. Science 296, 1106-1109 (2002). doi: 10.1126/science.296.5570.1106
[74] Connell, J. L. et al. 3D printing of microscopic bacterial communities. Proceedings of the National Academy of Sciences of the United States of America 110, 18380-18385 (2013). doi: 10.1073/pnas.1309729110
[75] Ovsianikov, A. et al. Laser fabrication of 3D gelatin scaffolds for the generation of bioartificial tissues. Materials 4, 288-299 (2011). doi: 10.3390/ma4010288
[76] Kufelt, O. et al. Water-soluble photopolymerizable chitosan hydrogels for biofabrication via two-photon polymerization. Acta Biomaterialia 18, 186-195 (2015). doi: 10.1016/j.actbio.2015.02.025
[77] Kaehr, B. & Shear, J. B. Multiphoton fabrication of chemically responsive protein hydrogels for microactuation. Proceedings of the National Academy of Sciences of the United States of America 105, 8850-8854 (2008). doi: 10.1073/pnas.0709571105
[78] Basu, S. & Campagnola, P. J. Properties of crosslinked protein matrices for tissue engineering applications synthesized by multiphoton excitation. Journal of Biomedical Materials Research Part A 71A, 359-368 (2004). doi: 10.1002/jbm.a.30175
[79] Spiegel, C. A. et al. 4D printing at the microscale. Advanced Functional Materials 30, 1907615 (2020). doi: 10.1002/adfm.201907615
[80] Xiong, W. et al. Laser-directed assembly of aligned carbon nanotubes in three dimensions for multifunctional device fabrication. Advanced Materials 28, 2002-2009 (2016). doi: 10.1002/adma.201505516
[81] Masui, K. et al. Laser fabrication of Au nanorod aggregates microstructures assisted by two-photon polymerization. Optics Express 19, 22786-22796 (2011). doi: 10.1364/OE.19.022786
[82] Peters, C. et al. Degradable magnetic composites for minimally invasive interventions: device fabrication, targeted drug delivery, and cytotoxicity tests. Advanced Materials 28, 533-538 (2016). doi: 10.1002/adma.201503112
[83] Xin, C. et al. Conical hollow microhelices with superior swimming capabilities for targeted cargo delivery. Advanced Materials 31, 1808226 (2019). doi: 10.1002/adma.201808226
[84] Yang, L. et al. Targeted single-cell therapeutics with magnetic tubular micromotor by one-step exposure of structured femtosecond optical vortices. Advanced Functional Materials 29, 1905745 (2019). doi: 10.1002/adfm.201905745
[85] Marino, A. et al. Two-photon lithography of 3D nanocomposite piezoelectric scaffolds for cell stimulation. ACS Applied Materials & Interfaces 7, 25574-25579 (2015).
[86] Saha, S. K. et al. Kinematic fixtures to enable multi-material printing and rapid non-destructive inspection during two-photon lithography. Precision Engineering 54, 131-137 (2018). doi: 10.1016/j.precisioneng.2018.05.009
[87] Waller, E. H., Renner, M. & von Freymann, G. Active aberration- and point-spread-function control in direct laser writing. Optics Express 20, 24949-24956 (2012). doi: 10.1364/OE.20.024949
[88] Takeyasu, N., Tanaka, T. & Kawata, S. Fabrication of 3D metal/polymer microstructures by site-selective metal coating. Applied Physics A 90, 205-209 (2008). doi: 10.1007/s00340-007-2917-y
[89] Klein, F. et al. Two-component polymer scaffolds for controlled three-dimensional cell culture. Advanced Materials 23, 1341-1345 (2011). doi: 10.1002/adma.201004060
[90] Da Sie, Y. et al. Fabrication of three-dimensional multi-protein microstructures for cell migration and adhesion enhancement. Biomedical Optics Express 6, 480-490 (2015). doi: 10.1364/BOE.6.000480
[91] Claus, T. K. et al. Simultaneous dual encoding of three-dimensional structures by light-induced modular ligation. Angewandte Chemie International Edition 55, 3817-3822 (2016). doi: 10.1002/anie.201509937
[92] Richter, B. et al. Guiding cell attachment in 3D microscaffolds selectively functionalized with two distinct adhesion proteins. Advanced Materials 29, 1604342 (2017). doi: 10.1002/adma.201604342
[93] Zieger, M. M. et al. Cleaving direct-laser-written microstructures on demand. Angewandte Chemie International Edition 56, 5625-5629 (2017). doi: 10.1002/anie.201701593
[94] Zieger, M. M. et al. A subtractive photoresist platform for micro- and macroscopic 3D printed structures. Advanced Functional Materials 28, 1801405 (2018). doi: 10.1002/adfm.201801405
[95] Gernhardt, M. et al. Multi-material 3D microstructures with photochemically adaptive mechanical properties. Journal of Materials Chemistry C 8, 10993-11000 (2020). doi: 10.1039/D0TC02751K
[96] Malinauskas, M. et al. 3D microporous scaffolds manufactured via combination of fused filament fabrication and direct laser writing ablation. Micromachines 5, 839-858 (2014). doi: 10.3390/mi5040839
[97] Malinauskas, M. et al. Ultrafast laser processing of materials: from science to industry. Light: Science & Applications 5, e16133 (2016).
[98] Mayer, F. et al. 3D fluorescence-based security features by 3D laser lithography. Advanced Materials Technologies 2, 1700212 (2017). doi: 10.1002/admt.201700212
[99] Maruyama, T. et al. Multi-material microstereolithography using a palette with multicolor photocurable resins. Optical Materials Express 10, 2522-2532 (2020). doi: 10.1364/OME.401810
[100] Choi, J. W., Kim, H. C. & Wicker, R. Multi-material stereolithography. Journal of Materials Processing Technology 211, 318-328 (2011). doi: 10.1016/j.jmatprotec.2010.10.003
[101] Wang, Q. M. et al. Lightweight mechanical metamaterials with tunable negative thermal expansion. Physical Review Letters 117, 175901 (2016). doi: 10.1103/PhysRevLett.117.175901
[102] Kowsari, K. et al. High-efficiency high-resolution multimaterial fabrication for digital light processing-based three-dimensional printing. 3D Printing and Additive Manufacturing 5, 185-193 (2018). doi: 10.1089/3dp.2018.0004
[103] Ma, Z. C. et al. Femtosecond laser programmed artificial musculoskeletal systems. Nature Communications 11, 4536 (2020). doi: 10.1038/s41467-020-18117-0
[104] Lamont, A. C. et al. A facile multi-material direct laser writing strategy. Lab on a Chip 19, 2340-2345 (2019). doi: 10.1039/C9LC00398C
[105] Mayer, F. et al. Multimaterial 3D laser microprinting using an integrated microfluidic system. Science Advances 5, eaau9160 (2019). doi: 10.1126/sciadv.aau9160
[106] Pregibon, D. C., Toner, M. & Doyle, P. S. Multifunctional encoded particles for high-throughput biomolecule analysis. Science 315, 1393-1396 (2007). doi: 10.1126/science.1134929
[107] Laza, S. C. et al. Two-photon continuous flow lithography. Advanced Materials 24, 1304-1308 (2012). doi: 10.1002/adma.201103357
[108] Richter, B. et al. Three-dimensional microscaffolds exhibiting spatially resolved surface chemistry. Advanced Materials 25, 6117-6122 (2013). doi: 10.1002/adma.201302678
[109] Brand, C. A. et al. Tension and elasticity contribute to fibroblast cell shape in three dimensions. Biophysical Journal 113, 770-774 (2017). doi: 10.1016/j.bpj.2017.06.058
[110] Scheiwe, A. C. et al. Subcellular stretch-induced cytoskeletal response of single fibroblasts within 3D designer scaffolds. Biomaterials 44, 186-194 (2015). doi: 10.1016/j.biomaterials.2014.12.018
[111] Serien, D. & Takeuchi, S. Multi-component microscaffold with 3D spatially defined proteinaceous environment. ACS Biomaterials Science & Engineering 3, 487-494 (2017).
[112] Wollhofen, R. et al. Multiphoton-polymerized 3D protein assay. ACS Applied Materials & Interfaces 10, 1474-1479 (2018).
[113] Hippler, M. et al. Mechanical stimulation of single cells by reversible host-guest interactions in 3D microscaffolds. Science Advances 6, eabc2648 (2020). doi: 10.1126/sciadv.abc2648
[114] Schmid, M. et al. Three-dimensional direct laser written achromatic axicons and multi-component microlenses. Optics Letters 43, 5837-5840 (2018). doi: 10.1364/OL.43.005837
[115] Gissibl, T. et al. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres. Nature Communications 7, 11763 (2016). doi: 10.1038/ncomms11763
[116] Nocentini, S. et al. Three-dimensional photonic circuits in rigid and soft polymers tunable by light. ACS Photonics 5, 3222-3230 (2018). doi: 10.1021/acsphotonics.8b00461
[117] Nocentini, S. et al. 3D printed photoresponsive materials for photonics. Advanced Optical Materials 7, 1900156 (2019). doi: 10.1002/adom.201900156
[118] Zhu, W. et al. 3D-printed artificial microfish. Advanced Materials 27, 4411-4417 (2015). doi: 10.1002/adma.201501372
[119] Hippler, M. et al. Controlling the shape of 3D microstructures by temperature and light. Nature Communications 10, 232 (2019). doi: 10.1038/s41467-018-08175-w
[120] Nishiguchi, A. et al. In-gel direct laser writing for 3D-designed hydrogel composites that undergo complex self-shaping. Advanced Science 5, 1700038 (2018). doi: 10.1002/advs.201700038
[121] Nishiyama, H., Odashima, S. & Asoh, S. Femtosecond laser writing of plasmonic nanoparticles inside PNIPAM microgels for light-driven 3D soft actuators. Optics Express 28, 26470-26480 (2020). doi: 10.1364/OE.399440
[122] Xiong, Z. et al. Fast solvent-driven micropump fabricated by two-photon microfabrication. Applied Physics A 93, 447-452 (2008). doi: 10.1007/s00339-008-4735-4
[123] Tian, Y. et al. Solvent response of polymers for micromachine manipulation. Physical Chemistry Chemical Physics 13, 4835-4838 (2011). doi: 10.1039/c0cp02006k
[124] Ohm, C., Brehmer, M. & Zentel, R. Liquid crystalline elastomers as actuators and sensors. Advanced Materials 22, 3366-3387 (2010). doi: 10.1002/adma.200904059
[125] Xie, P. & Zhang, R. B. Liquid crystal elastomers, networks and gels: advanced smart materials. Journal of Materials Chemistry 15, 2529-2550 (2005). doi: 10.1039/b413835j
[126] Zeng, H. et al. Light robots: bridging the gap between microrobotics and photomechanics in soft materials. Advanced Materials 30, 1703554 (2018). doi: 10.1002/adma.201703554
[127] Nocentini, S. et al. Optically driven soft micro robotics. Advanced Optical Materials 6, 1800207 (2018). doi: 10.1002/adom.201800207
[128] Zeng, H. et al. Light-fueled microscopic walkers. Advanced Materials 27, 3883-3887 (2015). doi: 10.1002/adma.201501446
[129] Martella, D. et al. Photonic microhand with autonomous action. Advanced Materials 29, 1704047 (2017). doi: 10.1002/adma.201704047
[130] Tanaka, T., Ishikawa, A. & Kawata, S. Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure. Applied Physics Letters 88, 081107 (2006). doi: 10.1063/1.2177636
[131] Kang, S., Vora, K. & Mazur, E. One-step direct-laser metal writing of sub-100 nm 3D silver nanostructures in a gelatin matrix. Nanotechnology 26, 121001 (2015). doi: 10.1088/0957-4484/26/12/121001
[132] Farrer, R. A. et al. Selective functionalization of 3-D polymer microstructures. Journal of the American Chemical Society 128, 1796-1797 (2006). doi: 10.1021/ja0583620
[133] LaFratta, C. N. et al. Direct laser patterning of conductive wires on three-dimensional polymeric microstructures. Chemistry of Materials 18, 2038-2042 (2006). doi: 10.1021/cm0525306
[134] Machida, M. et al. Spatially-targeted laser fabrication of multi-metal microstructures inside a hydrogel. Optics Express 27, 14657-14666 (2019). doi: 10.1364/OE.27.014657
[135] Lemma, E. D. et al. Mechanical properties tunability of three-dimensional polymeric structures in two-photon lithography. IEEE Transactions on Nanotechnology 16, 23-31 (2017).
[136] Lemma, E. D. et al. Tunable mechanical properties of stent-like microscaffolds for studying cancer cell recognition of stiffness gradients. Microelectronic Engineering 190, 11-18 (2018). doi: 10.1016/j.mee.2018.01.007
[137] Jin, D. D. et al. Four-dimensional direct laser writing of reconfigurable compound micromachines. Materials Today 32, 19-25 (2020). doi: 10.1016/j.mattod.2019.06.002
[138] Zhang, Y. L. et al. Dual-3D femtosecond laser nanofabrication enables dynamic actuation. ACS Nano 13, 4041-4048 (2019). doi: 10.1021/acsnano.8b08200
[139] Xiong, Z. et al. Asymmetric microstructure of hydrogel: two-photon microfabrication and stimuli-responsive behavior. Soft Matter 7, 10353-10359 (2011). doi: 10.1039/c1sm06137b
[140] Bauhofer, A. A. et al. Harnessing photochemical shrinkage in direct laser writing for shape morphing of polymer sheets. Advanced Materials 29, 1703024 (2017). doi: 10.1002/adma.201703024
[141] Dottermusch, S. et al. Exposure-dependent refractive index of Nanoscribe IP-Dip photoresist layers. Optics Letters 44, 29-32 (2019). doi: 10.1364/OL.44.000029
[142] de Miguel, G. et al. λ/20 axial control in 2.5D polymerized structures fabricated with DLW lithography. Optics Express 23, 24850-24858 (2015). doi: 10.1364/OE.23.024850
[143] Batchelor, R. R. et al. Spatially resolved coding of λ-orthogonal hydrogels by laser lithography. Chemical Communications 54, 2436-2439 (2018). doi: 10.1039/C7CC09619D
[144] Dolinski, N. D. et al. Solution Mask Liquid Lithography (SMaLL) for one-step, multimaterial 3D printing. Advanced Materials 30, 1800364 (2018). doi: 10.1002/adma.201800364
[145] Bialas, S. et al. Access to disparate soft matter materials by curing with two colors of light. Advanced Materials 31, 1807288 (2019). doi: 10.1002/adma.201807288
[146] Schwartz, J. J. & Boydston, A. J. Multimaterial actinic spatial control 3D and 4D printing. Nature Communications 10, 791 (2019). doi: 10.1038/s41467-019-08639-7
[147] Kaupp, M. et al. Wavelength selective polymer network formation of end-functional star polymers. Chemical Communications 52, 1975-1978 (2016). doi: 10.1039/C5CC09444E
[148] Batchelor, R. et al. Two in one: light as a tool for 3d printing and erasing at the microscale. Advanced Materials 31, 1904085 (2019). doi: 10.1002/adma.201904085
[149] Rekštytė, S. et al. Nanoscale precision of 3D Polymerization via polarization control. Advanced Optical Materials 4, 1209-1214 (2016). doi: 10.1002/adom.201600155
[150] Jisha, C. P. et al. Tunable pattern transitions in a liquid-crystal-monomer mixture using two-photon polymerization. Optics Letters 37, 4931-4933 (2012). doi: 10.1364/OL.37.004931
[151] Guo, Y. B., Shahsavan, H. & Sitti, M. 3D microstructures of liquid crystal networks with programmed voxelated director fields. Advanced Materials 32, 2002753 (2020). doi: 10.1002/adma.202002753