[1] Bao, X. Y. & Chen, L. Recent progress in distributed fiber optic sensors. Sensors 12, 8601–8639 (2012). doi: 10.3390/s120708601
[2] Bao, X. Y. & Chen, L. Recent progress in brillouin scattering based fiber sensors. Sensors 11, 4152–4187 (2011). doi: 10.3390/s110404152
[3] Hotate K. Recent achievements in BOCDA/BOCDR. Proceedings of IEEE SENSORS 142–145 (IEEE, Valencia, Spain, 2014).
[4] He, Z. Y., Liu, Q. W. & Tokunaga, T. Ultrahigh resolution fiber-optic quasi-static strain sensors for geophysical research. Photon. Sens. 3, 295–303 (2013). doi: 10.1007/s13320-013-0132-5
[5] Mirhabibi, M., Negarestani, A., Bolorizadeh, M. A., Rezaei, M. R., & Akhound, A. A new approach for radon monitoring in soil as an earthquake precursor using optical fiber. J. Radioanal. Nucl. Chem. 301, 207–211 (2014). doi: 10.1007/s10967-014-3147-5
[6] Zhang, W. T., Huang, W. Z., Li, L., Liu, W. Y. & Li, F. High resolution strain sensor for earthquake precursor observation and earthquake monitoring. Proceedings of the 6th European Workshop on Optical Fibre Sensors (SPIE, Limerick, Ireland, 2016).
[7] Leo, J., Low, K., Costa, J., Black, R. J. & Park, Y. L. Fiber optically sensorized multi-fingered robotic hand. Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems 1763–1768 (IEEE, Hamburg, Germany, 2015).
[8] Xiao L. F. et al. Impedance control of a robot needle with a fiber optic force sensor. Proceedings of the 13th International Conference on Signal Processing 1379–1383 (IEEE, Chengdu, China, 2016).
[9] Guo, J. J., Niu, M. X. & Yang, C. X. Highly flexible and stretchable optical strain sensing for human motion detection. Optica 4, 1285–1288 (2017). doi: 10.1364/OPTICA.4.001285
[10] Zadok, A. et al. Random-access distributed fiber sensing. Laser Photonics Rev. 6, L1–L5 (2012). doi: 10.1002/lpor.201200013
[11] Kurashima, T., Horiguchi, T. & Tateda, M. Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers. Opt. Lett. 15, 1038–1040 (1990). doi: 10.1364/OL.15.001038
[12] Ba, D. X. et al. Distributed measurement of dynamic strain based on multi-slope assisted fast BOTDA. Opt. Express 24, 9781–9793 (2016). doi: 10.1364/OE.24.009781
[13] Kurashima, T., Horiguchi, T. & Tateda, M. Thermal effects of Brillouin gain spectra in single-mode fibers. IEEE Photonics Technol. Lett. 2, 718–720 (1990). doi: 10.1109/68.60770
[14] Niklès, M., Thévenaz, L. & Robert, P. A. Simple distributed fiber sensor based on Brillouin gain spectrum analysis. Opt. Lett. 21, 758–760 (1996). doi: 10.1364/OL.21.000758
[15] Bao, X., Webb, D. J. & Jackson, D. A. 22-km distributed temperature sensor using Brillouin gain in an optical fiber. Opt. Lett. 18, 552–554 (1993). doi: 10.1364/OL.18.000552
[16] Hotate, K. Fiber distributed brillouin sensing with optical correlation-domain techniques. Proceedings of Asia Communications and Photonics Conference (OSA, Shanghai, China, 2014).
[17] Hotate, K., Arai, H. & Song, K. Y. Range-enlargement of simplified brillouin optical correlation domain analysis based on a temporal gating scheme. SICE J. Control Meas. Syst. Integr. 1, 271–274 (2008). doi: 10.9746/jcmsi.1.271
[18] Song, K. Y., He, Z. Y. & Hotate, K. Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis. Opt. Lett. 31, 2526–2528 (2006). doi: 10.1364/OL.31.002526
[19] Mizuno, Y., Zou, W. W., He, Z. Y. & Hotate, K. Proposal of Brillouin optical correlation-domain reflectometry (BOCDR). Opt. Express 16, 12148–12153 (2008). doi: 10.1364/OE.16.012148
[20] Mizuno, Y., Hayashi, N., Fukuda, H., Song, K. Y. & Nakamura, K. Ultrahigh-speed distributed Brillouin reflectometry. Light Sci. Appl. 5, e16184 (2016). doi: 10.1038/lsa.2016.184
[21] Lee, H., Hayashi, N., Mizuno, Y. & Nakamura, K. Slope-assisted Brillouin optical correlation-domain reflectometry: proof of concept. IEEE Photonics J. 8, 6802807 (2016).
[22] Mizuno, Y., He, Z. Y. & Hotate, K. One-end-access high-speed distributed strain measurement with 13-mm spatial resolution based on Brillouin optical correlation-domain reflectometry. IEEE Photonics Technol. Lett. 21, 474–476 (2009). doi: 10.1109/LPT.2009.2013643
[23] Lee, H., Hayashi, N., Mizuno, Y. & Nakamura, K. Operation of slope-assisted Brillouin optical correlation-domain reflectometry: comparison of system output with actual frequency shift distribution. Opt. Express 24, 29190–29197 (2016). doi: 10.1364/OE.24.029190
[24] Manotham, S., Kishi, M., He, Z. Y. & Hotate K. 1-cm spatial resolution with large dynamic range in strain distributed sensing by Brillouin optical correlation domain reflectometry based on intensity modulation. Proceedings Volume 8351, Third Asia Pacific Optical Sensors Conference (SPIE, Sydney, Australia, 2012).
[25] Denisov, A., Soto, M. A. & Thévenaz, L. Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration. Light Sci. Appl. 5, e16074 (2016). doi: 10.1038/lsa.2016.74
[26] Li, W. H., Bao, X. Y., Li, Y. & Chen, L. Differential pulse-width pair BOTDA for high spatial resolution sensing. Opt. Express 16, 21616–21625 (2008). doi: 10.1364/OE.16.021616
[27] Soto, M. A., Bolognini, G. & Di Pasquale, F. Long-range simplex-coded BOTDA sensor over 120km distance employing optical preamplification. Opt. Lett. 36, 232–234 (2011). doi: 10.1364/OL.36.000232
[28] Dong, Y. K. et al. High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation. IEEE Photonics J. 5, 2600407–2600407 (2013). doi: 10.1109/JPHOT.2013.2267532
[29] Urricelqui, J., Sagues, M. & Loayssa, A. Synthesis of Brillouin frequency shift profiles to compensate non-local effects and Brillouin induced noise in BOTDA sensors. Opt. Express 22, 18195–18202 (2014). doi: 10.1364/OE.22.018195
[30] Tu, X. B., Luo, H., Sun, Q., Hu, X. Y. & Meng, Z. Performance analysis of slope-assisted dynamic BOTDA based on Brillouin gain or phase-shift in optical fibers. J. Opt. 17, 105503 (2015). doi: 10.1088/2040-8978/17/10/105503
[31] Zhou, D. W. et al. Slope-assisted BOTDA based on vector SBS and frequency-agile technique for wide-strain-range dynamic measurements. Opt. Express 25, 1889–1902 (2017). doi: 10.1364/OE.25.001889
[32] Soto, M. A., Ramírez, J. A. & Thévenaz, L. Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration. Nat. Commun. 7, 10870 (2016). doi: 10.1038/ncomms10870
[33] Song, K. Y. & Hotate, K. Distributed fiber strain sensor with 1-kHz sampling rate based on Brillouin optical correlation domain analysis. IEEE Photonics Technol. Lett. 19, 1928–1930 (2007). doi: 10.1109/LPT.2007.908772
[34] Zhang, C. Y., Kishi, M. & Hotate, K. 5000 points/s high-speed random accessibility for dynamic strain measurement at arbitrary multiple points along a fiber by Brillouin optical correlation domain analysis. Appl. Phys. Express 8, 042501 (2015). doi: 10.7567/APEX.8.042501
[35] Sun, Q., Tu, X. B., Sun, S. L. & Meng, Z. Long-range BOTDA sensor over 50 km distance employing pre-pumped Simplex coding. J. Opt. 18, 055501 (2016). doi: 10.1088/2040-8978/18/5/055501
[36] Dong, Y. K., Chen, L. & Bao, X. Y. Time-division multiplexing-based BOTDA over 100km sensing length. Opt. Lett. 36, 277–279 (2011). doi: 10.1364/OL.36.000277
[37] Gyger, F., Rochat, E., Chin, S., Niklès, M. & Thévenaz, L. Extending the sensing range of Brillouin optical time-domain analysis up to 325 km combining four optical repeaters. Proceedings of the 23rd International Conference on Optical Fibre Sensors p91576Q (SPIE, Santander, Spain, 2014).
[38] Dong, Y. K., Chen, L. & Bao, X. Y. Extending the sensing range of Brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFAs. J. Light Technol. 30, 1161–1167 (2012). doi: 10.1109/JLT.2011.2170813
[39] Peled, Y., Motil, A., Yaron, L. & Tur, M. Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile. Opt. Express 19, 19845–19854 (2011). doi: 10.1364/OE.19.019845
[40] Motil, A., Danon, O., Peled, Y. & Tur, M. Pump-power-independent double slope-assisted distributed and fast Brillouin fiber-optic sensor. IEEE Photonics Technol. Lett. 26, 797–800 (2014). doi: 10.1109/LPT.2014.2302833
[41] Minardo, A., Coscetta, A., Bernini, R. & Zeni, L. Heterodyne slope-assisted Brillouin optical time-domain analysis for dynamic strain measurements. J. Opt. 18, 025606 (2016). doi: 10.1088/2040-8978/18/2/025606
[42] Bernini, R., Minardo, A. & Zeni, L. Dynamic strain measurement in optical fibers by stimulated Brillouin scattering. Opt. Lett. 34, 2613–2615 (2009). doi: 10.1364/OL.34.002613
[43] Voskoboinik, A., Yilmaz, O. F., Willner, A. W. & Tur, M. Sweep-free distributed Brillouin time-domain analyzer (SF-BOTDA). Opt. Express 19, B842–B847 (2011). doi: 10.1364/OE.19.00B842
[44] Voskoboinik, A. et al. Frequency-domain analysis of dynamically applied strain using sweep-free Brillouin time-domain analyzer and sloped-assisted FBG sensing. Opt. Express 20, B581–F586 (2012). doi: 10.1364/OE.20.00B581
[45] Feng, Z. H. et al. Performance-enhanced direct detection optical OFDM transmission with CAZAC equalization. IEEE Photonics Technol. Lett. 27, 1507–1510 (2015). doi: 10.1109/LPT.2015.2426954
[46] Zhao, C. et al. BOTDA using channel estimation with direct-detection optical OFDM technique. Opt. Express 25, 12698–12709 (2017). doi: 10.1364/OE.25.012698
[47] Fang, J., Xu, P. B., Dong, Y. K. & Shieh, W. Single-shot distributed Brillouin optical time domain analyzer. Opt. Express 25, 15188–15198 (2017). doi: 10.1364/OE.25.015188
[48] Urricelqui, J., Sagues, M. & Loayssa, A. BOTDA measurements tolerant to non-local effects by using a phase-modulated probe wave and RF demodulation. Opt. Express 21, 17186–17194 (2013). doi: 10.1364/OE.21.017186
[49] Yang, G. Y., Fan, X. Y. & He, Z. Y. Strain dynamic range enlargement of slope-assisted BOTDA by using Brillouin phase-gain ratio. J. Light. Technol. 35, 4451–4458 (2017). doi: 10.1109/JLT.2017.2748568
[50] Peled, Y., Motil, A. & Tur, M. Fast Brillouin optical time domain analysis for dynamic sensing. Opt. Express 20, 8584–8591 (2012). doi: 10.1364/OE.20.008584
[51] Kito, C., Takahashi, H., Toge, K. & Manabe, T. Dynamic strain measurement of 10-km fiber with frequency-swept pulsed BOTDA. J. Light Technol. 35, 1738–1743 (2017). doi: 10.1109/JLT.2017.2680458
[52] Urricelqui, J., Zornoza, A., Sagues, M. & Loayssa, A. Dynamic BOTDA measurements based on Brillouin phase-shift and RF demodulation. Opt. Express 20, 26942–26949 (2012). doi: 10.1364/OE.20.026942
[53] Ba, D. X. et al. Dynamic distributed Brillouin optical fiber sensing based on dual-modulation by combining single frequency modulation and frequency-agility modulation. IEEE Photonics J. 9, 7102908 (2017). doi: 10.1109/JPHOT.2017.2690319
[54] Dong, Y. K. et al. Characterization of evolution of mode coupling in a graded-index polymer optical fiber by using Brillouin optical time-domain analysis. Opt. Express 22, 26510–26516 (2014). doi: 10.1364/OE.22.026510
[55] Dong, Y. K., Zhang, H. Y., Chen, L. & Bao, X. Y. 2cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair. Appl. Opt. 51, 1229–1235 (2012). doi: 10.1364/AO.51.001229
[56] Xu, P. B. et al. Bend-insensitive distributed sensing in singlemode-multimode-singlemode optical fiber structure by using Brillouin optical time-domain analysis. Opt. Express 23, 22714–22722 (2015). doi: 10.1364/OE.23.022714
[57] Boyd, R. W. Nonlinear Optics 429–471 (Academic Press, Burlington, 2008).
[58] Farahani, M. A., Castillo-Guerra, E. & Colpitts, B. G. Accurate estimation of Brillouin frequency shift in Brillouin optical time domain analysis sensors using cross correlation. Opt. Lett. 36, 4275–4277 (2011). doi: 10.1364/OL.36.004275
[59] Wang, F., Zhan, W. W., Zhang, X. P. & Lu, Y. G. Improvement of spatial resolution for BOTDR by iterative subdivision method. J. Light Technol. 31, 3663–3667 (2013). doi: 10.1109/JLT.2013.2286193