[1] Schrödinger E. Die gegenwärtige situation in der quantenmechanik. Naturwissenschaften 1935; 23: 807–812. doi: 10.1007/BF01491891
[2] Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete? Phys Rev 1935; 47: 777–780. doi: 10.1103/PhysRev.47.777
[3] Bell JS. On the einstein podolsky rosen paradox. Physics 1964; 1: 195–200. doi: 10.1103/PhysicsPhysiqueFizika.1.195
[4] Wootters WK, Zurek WH. A single quantum cannot be cloned. Nature 1982; 299: 802–803. doi: 10.1038/299802a0
[5] Ding D-S, Zhang W, Shi S, Zhou Z-Y, Li Y et al. High-dimensional entanglement between distant atomic-ensemble memories. Light Sci Appl 2016; 5: e16157, doi: 10.1038/lsa.2016.157.
[6] Parigi V, D'Ambrosio V, Arnold C, Marrucci L, Sciarrino F et al. Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory. Nat Commun 2015; 6: 7706. doi: 10.1038/ncomms8706
[7] Kiktenko EO, Fedorov AK, Man'ko OV, Man'ko VI. Multilevel superconducting circuits as two-qubit systems: Operations, state preparation, and entropic inequalities. Phys Rev A 2015; 91: 042312. doi: 10.1103/PhysRevA.91.042312
[8] Kiktenko EO, Fedorov AK, Strakhov AA, Man'ko VI. Single qudit realization of the Deutsch algorithm using superconducting many-level quantum circuits. Phys Lett A 2015; 379: 1409–1413. doi: 10.1016/j.physleta.2015.03.023
[9] Schaeff C, Polster R, Huber M, Ramelow S, Zeilinger A. Experimental access to higher-dimensional entangled quantum systems using integrated optics. Optica 2015; 2: 523–529. doi: 10.1364/OPTICA.2.000523
[10] Martin A, Guerreiro T, Tiranov A, Designolle S, Fröwis F et al. Quantifying photonic high-dimensional entanglement. Phys Rev Lett 2017; 118: 110501. doi: 10.1103/PhysRevLett.118.110501
[11] Schmiegelow CT, Schulz J, Kaufmann H, Ruster T, Poschinger UG et al. Transfer of optical orbital angular momentum to a bound electron. Nat Commun 2016; 7: 12998. doi: 10.1038/ncomms12998
[12] Karimi E, Schulz SA, De Leon I, Qassim H, Upham J et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light Sci Appl 2014; 3: e167, doi: 10.1038/lsa.2014.48.
[13] Cai X, Wang J, Strain MJ, Johnson-Morris B, Zhu J et al. Integrated compact optical vortex beam emitters. Science 2012; 338: 363–366. doi: 10.1126/science.1226528
[14] Rubinsztein-Dunlop H, Forbes A, Berry MV, Dennis MR, Andrews DL et al. Roadmap on structured light. J Opt 2016; 19: 013001. doi: 10.1088/2040-8978/19/1/013001
[15] Padgett MJ. Orbital angular momentum 25 years on. Opt Express 2017; 25: 11265–11274. doi: 10.1364/OE.25.011265
[16] Molina-Terriza G, Torres JP, Torner L. Twisted photons. Nat Phys 2007; 3: 305–310.
[17] Krenn M, Malik M, Erhard M, Zeilinger A. Orbital angular momentum of photons and the entanglement of Laguerre—Gaussian modes. Phil Trans R Soc A 2017; 375: 20150442. doi: 10.1098/rsta.2015.0442
[18] Nielsen MA, Chuang IL. Quantum Computation and Quantum Information. Cambridge University Press, 2010.
[19] Horodecki R, Horodecki P, Horodecki M, Horodecki K. Quantum entanglement. Rev Mod Phys 2009; 81: 865–942. doi: 10.1103/RevModPhys.81.865
[20] Plenio MB, Virmani S. An introduction to entanglement measures. Quantum Inf Comput 2007; 7: 1–51.
[21] Bruss D. Characterizing entanglement. J Math Phys 2002; 43: 4237–4251. doi: 10.1063/1.1494474
[22] Pan J-W, Chen Z-B, Lu C-Y, Weinfurter H, Zeilinger A et al. Multiphoton entanglement and interferometry. Rev Mod Phys 2012; 84: 777–838. doi: 10.1103/RevModPhys.84.777
[23] Yin J, Cao Y, Li Y-H, Liao S-K, Zhang L et al. Satellite-based entanglement distribution over 1200 kilometers. Science 2017; 356: 1140–1144. doi: 10.1126/science.aan3211
[24] Allen L, Beijersbergen MW, Spreeuw R, Woerdman JP. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A 1992; 45: 8185–8189. doi: 10.1103/PhysRevA.45.8185
[25] Fickler R, Krenn M, Lapkiewicz R, Ramelow S, Zeilinger A. Real-time imaging of quantum entanglement. Sci Rep 2013; 3: 1914. doi: 10.1038/srep01914
[26] Bechmann-Pasquinucci H, Tittel W. Quantum cryptography using larger alphabets. Phys Rev A 2000; 61: 062308. doi: 10.1103/PhysRevA.61.062308
[27] Cerf NJ, Bourennane M, Karlsson A, Gisin N. Security of quantum key distribution using d-level systems. Phys Rev Lett 2002; 88: 127902. doi: 10.1103/PhysRevLett.88.127902
[28] Ekert AK. Quantum cryptography based on Bell's theorem. Phys Rev Lett 1991; 67: 661–663. doi: 10.1103/PhysRevLett.67.661
[29] Bennett CH, Brassard G. Quantum Cryptography: Public Key Distribution and Coin Tossing. 1984 International Conference on Computers, Systems & Signal Processing: Bangalore, India. 1984, 175–179.
[30] Bennett CH, Brassard G, Mermin ND. Quantum cryptography without Bell's theorem. Phys Rev Lett 1992; 68: 557–559. doi: 10.1103/PhysRevLett.68.557
[31] Shor PW, Preskill J. Simple proof of security of the BB84 quantum key distribution protocol. Phys Rev Lett 2000; 85: 441–444. doi: 10.1103/PhysRevLett.85.441
[32] Scarani V, Bechmann-Pasquinucci H, Cerf NJ, Dusek M, Lütkenhaus N et al. The security of practical quantum key distribution. Rev Mod Phys 2009; 81: 1301. doi: 10.1103/RevModPhys.81.1301
[33] Bruss D. Optimal eavesdropping in quantum cryptography with six states. Phys Rev Lett 1998; 81: 3018–3021. doi: 10.1103/PhysRevLett.81.3018
[34] Lo H-K. Proof of unconditional security of six-state quantum key distribution scheme. Physics 2001; 1: 81–94.
[35] Brádler K, Mirhosseini M, Fickler R, Broadbent A, Boyd R. Finite-key security analysis for multilevel quantum key distribution. New J Phys 2016; 18: 073030. doi: 10.1088/1367-2630/18/7/073030
[36] Sasaki T, Yamamoto Y, Koashi M. Practical quantum key distribution protocol without monitoring signal disturbance. Nature 2014; 509: 475–478. doi: 10.1038/nature13303
[37] Hensen B, Bernien H, Dréau AE, Reiserer A, Kalb N et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 2015; 526: 682–686.
[38] Giustina M, Versteegh MA, Wengerowsky S, Handsteiner J, Hochrainer A et al. Significant-loophole-free test of Bell's theorem with entangled photons. Phys Rev Lett 2015; 115: 250401. doi: 10.1103/PhysRevLett.115.250401
[39] Shalm LK, Meyer-Scott E, Christensen BG, Bierhorst P, Wayne MA et al. Strong loophole-free test of local realism. Phys Rev Lett 2015; 115: 250402. doi: 10.1103/PhysRevLett.115.250402
[40] Rosenfeld W, Burchardt D, Garthoff R, Redeker K, Ortegel N et al. Event-ready bell test using entangled atoms simultaneously closing detection and locality loopholes. Phys Rev Lett 2017; 119: 010402. doi: 10.1103/PhysRevLett.119.010402
[41] Mermin ND. Quantum mechanics vs local realism near the classical limit: A Bell inequality for spin s. Phys Rev D 1980; 22: 356. doi: 10.1103/PhysRevD.22.356
[42] Garg A, Mermin ND. Bell inequalities with a range of violation that does not diminish as the spin becomes arbitrarily large. Phys Rev Lett 1982; 49: 901. doi: 10.1103/PhysRevLett.49.901
[43] Peres A. Finite violation of a Bell inequality for arbitrarily large spin. Phys Rev A 1992; 46: 4413. doi: 10.1103/PhysRevA.46.4413
[44] Kaszlikowski D, Gnaci'n ski P, Zukowski M, Miklaszewski W, Zeilinger A. Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits. Phys Rev Lett 2000; 85: 4418–4421. doi: 10.1103/PhysRevLett.85.4418
[45] Collins D, Gisin N, Linden N, Massar S, Popescu S. Bell inequalities for arbitrarily high-dimensional systems. Phys Rev Lett 2002; 88: 040404. doi: 10.1103/PhysRevLett.88.040404
[46] Dada AC, Leach J, Buller GS, Padgett MJ, Andersson E. Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities. Nat Phys 2011; 7: 677–680. doi: 10.1038/nphys1996
[47] Huber M, Pawłowski M. Weak randomness in device-independent quantum key distribution and the advantage of using high-dimensional entanglement. Phys Rev A 2013; 88: 032309. doi: 10.1103/PhysRevA.88.032309
[48] Bouda J, Pivoluska M, Plesch M, Wilmott C. Weak randomness seriously limits the security of quantum key distribution. Phys Rev A 2012; 86: 062308. doi: 10.1103/PhysRevA.86.062308
[49] Eberhard PH. Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment. Phys Rev A 1993; 47: R747–R750. doi: 10.1103/PhysRevA.47.R747
[50] Giustina M, Mech A, Ramelow S, Wittmann B, Kofler J et al. Bell violation using entangled photons without the fair-sampling assumption. Nature 2013; 497: 227–230. doi: 10.1038/nature12012
[51] Christensen BG, McCusker KT, Altepeter JB, Calkins B, Gerrits T et al. Detection-loophole-free test of quantum nonlocality, and applications. Phys Rev Lett 2013; 111: 130406. doi: 10.1103/PhysRevLett.111.130406
[52] Massar S. Nonlocality, closing the detection loophole, and communication complexity. Phys Rev A 2002; 65: 032121. doi: 10.1103/PhysRevA.65.032121
[53] Vértesi T, Pironio S, Brunner N. Closing the detection loophole in Bell experiments using qudits. Phys Rev Lett 2010; 104: 060401. doi: 10.1103/PhysRevLett.104.060401
[54] Campbell ET, Anwar H, Browne DE. Magic-state distillation in all prime dimensions using quantum reed-muller codes. Phys Rev X 2012; 2: 041021.
[55] Bocharov A, Roetteler M, Svore KM. Factoring with qutrits: Shor's algorithm on ternary and metaplectic quantum architectures. Phys Rev A 2017; 96: 012306. doi: 10.1103/PhysRevA.96.012306
[56] Mair A, Vaziri A, Weihs G, Zeilinger A. Entanglement of the orbital angular momentum states of photons. Nature 2001; 412: 313–316. doi: 10.1038/35085529
[57] Miatto FM, Yao AM, Barnett SM. Full characterization of the quantum spiral bandwidth of entangled biphotons. Phys Rev A 2011; 83: 033816–033819. doi: 10.1103/PhysRevA.83.033816
[58] Romero J, Giovannini D, Franke-Arnold S, Barnett SM, Padgett MJ. Increasing the dimension in high-dimensional two-photon orbital angular momentum entanglement. Phys Rev A 2012; 86: 012334. doi: 10.1103/PhysRevA.86.012334
[59] Chen L, Romero J. Hardy's nonlocality proof using twisted photons. Opt Express 2012; 20: 21687–21692. doi: 10.1364/OE.20.021687
[60] Chen L, Zhang W, Wu Z, Wang J, Fickler R et al. Experimental ladder proof of Hardy's nonlocality for high-dimensional quantum systems. Phys Rev A 2017; 96: 022115. doi: 10.1103/PhysRevA.96.022115
[61] Zhang Y, Roux FS, Konrad T, Agnew M, Leach J et al. Engineering two-photon high-dimensional states through quantum interference. Sci Adv 2016; 2: e1501165. doi: 10.1126/sciadv.1501165
[62] Hong CK, Ou Z-Y, Mandel L. Measurement of subpicosecond time intervals between two photons by interference. Phys Rev Lett 1987; 59: 2044–2046. doi: 10.1103/PhysRevLett.59.2044
[63] Fickler R, Lapkiewicz R, Huber M, Lavery MP, Padgett MJ et al. Interface between path and OAM entanglement for high-dimensional photonic quantum information. Nat Commun 2014; 26: 060305.
[64] Krenn M, Hochrainer A, Lahiri M, Zeilinger A. Entanglement by Path Identity. Phys Rev Lett 2017; 118: 080401. doi: 10.1103/PhysRevLett.118.080401
[65] Krenn M, Gu X-M, Zeilinger A. Quantum experiments and graphs: multiparty states as coherent superpositions of perfect matchings. Phys Rev Lett 2017; 119: 240403. doi: 10.1103/PhysRevLett.119.240403
[66] Krenn M, Malik M, Fickler R, Lapkiewicz R, Zeilinger A. Automated search for new quantum experiments. Phys Rev Lett 2016; 116: 090405. doi: 10.1103/PhysRevLett.116.090405
[67] Carolan J, Harrold C, Sparrow C, Martín-López E, Russell NJ et al. Universal linear optics. Science 2015; 349: 711–716. doi: 10.1126/science.aab3642
[68] Morizur J-F, Nicholls L, Jian P, Armstrong S, Treps N et al. Programmable unitary spatial mode manipulation. J Opt Soc Am A 2010; 27: 2524–2531. doi: 10.1364/JOSAA.27.002524
[69] Fickler R, Ginoya M, Boyd RW. Custom-tailored spatial mode sorting by controlled random scattering. Phys Rev B 2017; 95: 161108. doi: 10.1103/PhysRevB.95.161108
[70] Asadian A, Erker P, Huber M, Klöckl C. Heisenberg-Weyl observables: Bloch vectors in phase space. Phys Rev A 2016; 94: 010301. doi: 10.1103/PhysRevA.94.010301
[71] Babazadeh A, Erhard M, Wang F, Malik M, Nouroozi R et al. High-dimensional single-photon quantum gates: concepts and experiments. Phys Rev Lett 2017; 119: 180510. doi: 10.1103/PhysRevLett.119.180510
[72] Leach J, Padgett MJ, Barnett SM, Franke-Arnold S, Courtial J. Measuring the orbital angular momentum of a single photon. Phys Rev Lett 2002; 88: 257901. doi: 10.1103/PhysRevLett.88.257901
[73] de Oliveira AN, Walborn SP, Monken CH. Implementing the Deutsch algorithm with polarization and transverse spatial modes. J Opt B Quantum Semiclass Opt 2005; 7: 288. doi: 10.1088/1464-4266/7/9/009
[74] Chen D-X, Liu R-F, Zhang P, Wang Y-L. Realization of quantum permutation algorithm in high dimensional Hilbert space. Chin Phys B 2017; 26: 060305. doi: 10.1088/1674-1056/26/6/060305
[75] Schlederer F, Krenn M, Fickler R, Malik M, Zeilinger A. Cyclic transformation of orbital angular momentum modes. New J Phys 2016; 18: 043019. doi: 10.1088/1367-2630/18/4/043019
[76] Scarani V, Iblisdir S, Gisin N, Acin A. Quantum cloning. Rev Mod Phys 2005; 77: 1225–1256.
[77] Nagali E, Giovannini D, Marrucci L, Slussarenko S, Santamato E et al. Experimental optimal cloning of four-dimensional quantum states of photons. Phys Rev Lett 2010; 105: 073602. doi: 10.1103/PhysRevLett.105.073602
[78] Bouchard F, Fickler R, Boyd RW, Karimi E. High-dimensional quantum cloning and applications to quantum hacking. Sci Adv 2017; 3: e1601915. doi: 10.1126/sciadv.1601915
[79] Nagali E, Sansoni L, Sciarrino F, De Martini F, Marrucci L et al. Optimal quantum cloning of orbital angular momentum photon qubits through Hong—Ou—Mandel coalescence. Nat Photonics 2009; 3: 720–723. doi: 10.1038/nphoton.2009.214
[80] Gröblacher S, Jennewein T, Vaziri A, Weihs G, Zeilinger A. Experimental quantum cryptography with qutrits. New J Phys 2006; 8: 75. doi: 10.1088/1367-2630/8/5/075
[81] Mafu M, Dudley A, Goyal S, Giovannini D, McLaren M, Padgett MJ et al. Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases. Phys Rev A 2013; 88: 032305. doi: 10.1103/PhysRevA.88.032305
[82] Mirhosseini M, Malik M, Shi Z, Boyd RW. Efficient separation of the orbital angular momentum eigenstates of light. Nat Commun 2013; 4: 2781. doi: 10.1038/ncomms3781
[83] Vallone G, D'Ambrosio V, Sponselli A, Slussarenko S, Marrucci L et al. Free-space quantum key distribution by rotation-invariant twisted photons. Phys Rev Lett 2014; 113: 060503. doi: 10.1103/PhysRevLett.113.060503
[84] Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 2013; 340: 1545–1548. doi: 10.1126/science.1237861
[85] Gibson G, Courtial J, Padgett MJ, Vasnetsov M, Pas'ko V et al. Free-space information transfer using light beams carrying orbital angular momentum. Opt Express 2004; 12: 5448–5456. doi: 10.1364/OPEX.12.005448
[86] Wang J, Yang J-Y, Fazal IM, Ahmed N, Yan Y et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat Photonics 2012; 6: 488–496. doi: 10.1038/nphoton.2012.138
[87] Krenn M, Fickler R, Fink M, Handsteiner J, Malik M et al. Communication with spatially modulated light through turbulent air across Vienna. New J Phys 2014; 16: 113028. doi: 10.1088/1367-2630/16/11/113028
[88] Ren Y, Wang Z, Liao P, Li L, Xie G et al. Experimental characterization of a 400 Gbit/s orbital angular momentum multiplexed free-space optical link over 120 m. Opt Lett 2016; 41: 622–625. doi: 10.1364/OL.41.000622
[89] Krenn M, Handsteiner J, Fink M, Fickler R, Ursin R et al. Twisted light transmission over 143 km. Proc Natl Acad Sci USA 2016; 113: 13648–13653. doi: 10.1073/pnas.1612023113
[90] Krenn M, Handsteiner J, Fink M, Fickler R, Zeilinger A. Twisted photon entanglement through turbulent air across Vienna. Proc Natl Acad Sci USA 2015; 112: 14197–14201. doi: 10.1073/pnas.1517574112
[91] Sit A, Bouchard F, Fickler R, Gagnon-Bischoff J, Larocque H et al. High-dimensional intracity quantum cryptography with structured photons. Optica 2017; 9: 1006–1010. doi: 10.1364/OPTICA.4.001006
[92] Ren Y, Xie G, Huang H, Ahmed N, Yan Y et al. Adaptive-optics-based simultaneous pre-and post-turbulence compensation of multiple orbital-angular-momentum beams in a bidirectional free-space optical link. Optica 2014; 1: 376–382. doi: 10.1364/OPTICA.1.000376
[93] Hughes RJ, Nordholt JE, Derkacs D, Peterson CG. Practical free-space quantum key distribution over 10 km in daylight and at night. New J Phys 2002; 4: 43. doi: 10.1088/1367-2630/4/1/343
[94] Liao S-K, Yong H-L, Liu C, Shentu G-L, Li D-D et al. Long-distance free-space quantum key distribution in daylight towards inter-satellite communication. Nat Photonics 2017; 11: nphoton-2017. doi: 10.1038/nphoton.2017.116
[95] Kitagawa T, Rudner MS, Berg E, Demler E. Exploring topological phases with quantum walks. Phys Rev A 2010; 82: 033429. doi: 10.1103/PhysRevA.82.033429
[96] Kitagawa T, Broome MA, Fedrizzi A, Rudner MS, Berg E et al. Observation of topologically protected bound states in photonic quantum walks. Nat Commun 2016; 3: 882. doi: 10.1038/ncomms1872
[97] Shenvi N, Kempe J, Whaley KB. Quantum random-walk search algorithm. Phys Rev A 2003; 67: 052307. doi: 10.1103/PhysRevA.67.052307
[98] Childs AM. Universal computation by quantum walk. Phys Rev Lett 2009; 102: 180501. doi: 10.1103/PhysRevLett.102.180501
[99] Broome MA, Fedrizzi A, Lanyon BP, Kassal I, Aspuru-Guzik A et al. Discrete single-photon quantum walks with tunable decoherence. Phys Rev Lett 2010; 104: 153602. doi: 10.1103/PhysRevLett.104.153602
[100] Schreiber A, Cassemiro KN, Potoček V, Gábris A, Mosley PJ et al. Photons walking the line: a quantum walk with adjustable coin operations. Phys Rev Lett 2010; 104: 050502. doi: 10.1103/PhysRevLett.104.050502
[101] Peruzzo A, Lobino M, Matthews JC, Matsuda N, Politi A et al. Quantum walks of correlated photons. Science 2010; 329: 1500–1503. doi: 10.1126/science.1193515
[102] Sansoni L, Sciarrino F, Vallone G, Mataloni P, Crespi A et al. Two-particle bosonic-fermionic quantum walk via integrated photonics. Phys Rev Lett 2012; 108: 010502. doi: 10.1103/PhysRevLett.108.010502
[103] Zhang P, Liu B-H, Liu R-F, Li H-R, Li F-L et al. Implementation of one-dimensional quantum walks on spin-orbital angular momentum space of photons. Phys Rev A 2010; 81: 052322. doi: 10.1103/PhysRevA.81.052322
[104] Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys Rev Lett 2006; 96: 163905. doi: 10.1103/PhysRevLett.96.163905
[105] Thouless DJ, Kohmoto M, Nightingale MP, Nijs Den M. Quantized Hall conductance in a two-dimensional periodic potential. Phys Rev Lett 1982; 49: 405–408. doi: 10.1103/PhysRevLett.49.405
[106] Cardano F, Massa F, Qassim H, Karimi E, Slussarenko S et al. Quantum walks and wavepacket dynamics on a lattice with twisted photons. Sci Adv 2015; 1: e1500087. doi: 10.1126/sciadv.1500087
[107] Berry MV. Quantal phase factors accompanying adiabatic changes. Proc R Soc Lond A Math Phys Sci 1984; 392: 45–57. doi: 10.1098/rspa.1984.0023
[108] Lu L, Joannopoulos JD, Soljačić M. Topological states in photonic systems. Nat Phys 2016; 12: 626–629. doi: 10.1038/nphys3796
[109] Cardano F, Maffei M, Massa F, Piccirillo B, De Lisio C et al. Statistical moments of quantum-walk dynamics reveal topological quantum transitions. Nat Commun 2016; 7: 11439. doi: 10.1038/ncomms11439
[110] Cardano F, D'Errico A, Dauphin A, Maffei M, Piccirillo B et al. Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons. Nat Commun 2017; 8: 15516. doi: 10.1038/ncomms15516
[111] Bennett CH, Brassard G, Crépeau C, Jozsa R, Peres A et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev Lett 1993; 70: 1895–1899. doi: 10.1103/PhysRevLett.70.1895
[112] Wang X-L, Cai X-D, Su Z-E, Chen M-C, Wu D et al. Quantum teleportation of multiple degrees of freedom of a single photon. Nature 2015; 518: 516–519. doi: 10.1038/nature14246
[113] Bouwmeester D, Pan JW, Mattle K, Eibl M, Weinfurter H. Experimental quantum teleportation. Nature 1997; 390: 575–579. doi: 10.1038/37539
[114] Ren JG, Xu P, Yong HL, Zhang L, Liao SK et al. Ground-to-satellite quantum teleportation. Nature advance online publication 2017 doi: (101038/nature23675).2017.
[115] Hayashi A, Hashimoto T, Horibe M. Reexamination of optimal quantum state estimation of pure states. Phys Rev A 2005; 72: 032325. doi: 10.1103/PhysRevA.72.032325
[116] Greenberger DM, Horne MA, Zeilinger A Going beyond Bell's theorem. In: Kafatos M, editor. Bell's Theorem, Quantum Theory and Conceptions of the Universe. New York: Springer; 1989. p 69–72. arXiv: 0712.0921.
[117] Greenberger DM, Horne MA, Shimony A, Zeilinger A. Bell's theorem without inequalities. Am J Phys 1990; 58: 1131–1143. doi: 10.1119/1.16243
[118] Mermin ND. Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys Rev Lett 1990; 65: 1838–1840. doi: 10.1103/PhysRevLett.65.1838
[119] Malik M, Erhard M, Huber M, Krenn M, Fickler R et al. Multi-photon entanglement in high dimensions. Nat Photonics 2017; 10: 248–252. doi: 10.1038/nphoton.2016.12
[120] Huber M, de Vicente JI. Structure of multidimensional entanglement in multipartite systems. Phys Rev Lett. 2013; 110: 030501–030505. doi: 10.1103/PhysRevLett.110.030501
[121] Erhard M, Malik M, Krenn M, Zeilinger A. Experimental GHZ Entanglement beyond Qubits. arXiv preprint arXiv: 170803881. 2017.
[122] Ryu J, Lee C, Z ukowski M, Lee J. Greenberger-Horne-Zeilinger theorem for N qudits. Phys Rev A 2013; 88: 042101. doi: 10.1103/PhysRevA.88.042101
[123] Ryu J, Lee C, Yin Z, Rahaman R, Angelakis DG et al. Multisetting Greenberger-Horne-Zeilinger theorem. Phys Rev A 2014; 89: 024103. doi: 10.1103/PhysRevA.89.024103
[124] Lawrence J. Rotational covariance and Greenberger-Horne-Zeilinger theorems for three or more particles of any dimension. Phys Rev A 2014; 89: 012105. doi: 10.1103/PhysRevA.89.012105
[125] Lawrence J. Mermin inequalities for perfect correlations in many-qutrit systems. Phys Rev A 2017; 95: 042123. doi: 10.1103/PhysRevA.95.042123
[126] Gregg P, Kristensen P, Ramachandran S. Conservation of orbital angular momentum in air-core optical fibers. Optica 2015; 2: 267–270. doi: 10.1364/OPTICA.2.000267
[127] Huang H, Milione G, Lavery MPJ, Xie G, Ren Y et al. Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre. Sci Rep 2015; 5: 14931. doi: 10.1038/srep14931
[128] Carpenter J, Eggleton BJ, Schröder J. Observation of Eisenbud—Wigner—Smith states as principal modes in multimode fibre. Nat Photonics 2015; 9: 751–757. doi: 10.1038/nphoton.2015.188
[129] Wang A, Zhu L, Chen S, Du C, Mo Q et al. Characterization of LDPC-coded orbital angular momentum modes transmission and multiplexing over a 50-km fiber. Opt Express 2016; 24: 11716–11726. doi: 10.1364/OE.24.011716
[130] Liao S-K, Cai W-Q, Liu W-Y, Zhang L, Li Y et al. Satellite-to-ground quantum key distribution. Nature 2017; 549: 43–47. doi: 10.1038/nature23655
[131] Karimi E, Boyd RW, la Hoz de P, de Guise H, Řeháček J et al. Radial quantum number of Laguerre-Gauss modes. Phys Rev A 2014; 89: 063813. doi: 10.1103/PhysRevA.89.063813
[132] Plick WN, Krenn M. Physical meaning of the radial index of Laguerre-Gauss beams. Phys Rev A 2015; 92: 063841. doi: 10.1103/PhysRevA.92.063841
[133] Karimi E, Giovannini D, Bolduc E, Bent N, Miatto FM et al. Exploring the quantum nature of the radial degree of freedom of a photon via Hong-Ou-Mandel interference. Phys Rev A 2014; 89: 013829–0138355. doi: 10.1103/PhysRevA.89.013829
[134] Krenn M, Huber M, Fickler R, Lapkiewicz R, Ramelow S et al. Generation and confirmation of a (100 × 100)-dimensional entangled quantum system. Proc Natl Acad Sci USA 2014; 111: 6243–6247. doi: 10.1073/pnas.1402365111
[135] Restuccia S, Giovannini D, Gibson G, Padgett M. Comparing the information capacity of Laguerre—Gaussian and Hermite—Gaussian modal sets in a finite-aperture system. Opt Express 2016; 24: 27127–27136. doi: 10.1364/OE.24.027127
[136] McLaren M, Mhlanga T, Padgett MJ, Roux FS, Forbes A. Self-healing of quantum entanglement after an obstruction. Nat Commun 2014; 5: 3248. doi: 10.1038/ncomms4248
[137] Krenn M, Fickler R, Huber M, Lapkiewicz R, Plick W et al. Entangled singularity patterns of photons in Ince-Gauss modes. Phys Rev A 2013; 87: 012326. doi: 10.1103/PhysRevA.87.012326
[138] Siviloglou GA, Broky J, Dogariu A, Christodoulides DN. Observation of accelerating Airy beams. Phys Rev Lett 2007; 99: 213901. doi: 10.1103/PhysRevLett.99.213901
[139] Duan L-M, Lukin M, Cirac I, Zoller P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 2001; 414: 413–418. doi: 10.1038/35106500
[140] Huber M, Perarnau-Llobet M, de Vicente JI. Entropy vector formalism and the structure of multidimensional entanglement in multipartite systems. Phys Rev A 2013; 88: 042328–042337. doi: 10.1103/PhysRevA.88.042328
[141] Goyeneche D, Bielawski J, Z yczkowski K. Multipartite entanglement in heterogeneous systems. Phys Rev A 2016; 94: 012346. doi: 10.1103/PhysRevA.94.012346