[1] Recami E, Zamboni-Rached M, Hernandez-Figueroa HE. Localized waves: a scientific and historical introduction. In: Hernández-Figueroa HE, Zamboni-Rached M, Recami E, editors. Localized Waves, Wiley Series in Microwave and Optical Engineering. Hoboken, N.J.: Wiley-Interscience; 2008.
[2] Recami E, Zamboni-Rached M. Localized waves: a review. In: Hawkes P, editor. Advances in Imaging and Electron Physics, Vol. 156. Amsterdam: Elsevier; 2009. p235–353.
[3] Sõnajalg H, Rätsep M, Saari P. Demonstration of the Bessel-X pulse propagating with strong lateral and longitudinal localization in a dispersive medium. Opt Lett 1997; 22: 310–312. doi: 10.1364/OL.22.000310
[4] Durnin J, Miceli Jr JJ, Eberly JH. Diffraction-free beams. Phys Rev Lett 1987; 58: 1499–1501. doi: 10.1103/PhysRevLett.58.1499
[5] Salo J, Fagerholm J, Friberg AT, Salomaa MM. Unified description of nondiffracting X and Y waves. Phys Rev E 2000; 62: 4261–4275. doi: 10.1103/PhysRevE.62.4261
[6] Lu JY, Greenleaf JF. Ultrasonic nondiffracting transducer for medical imaging. IEEE Trans Ultrason Ferroelect Freq Control 1990; 37: 438–447. doi: 10.1109/58.105250
[7] Lu JY, Greenleaf JF. Nondiffracting X waves-exact solutions to free-space scalar wave equation and their finite aperture realizations. IEEE Trans Ultrason Ferroelect Freq Control 1992; 39: 19–31. doi: 10.1109/58.166806
[8] Yalizay B, Ersoy T, Soylu B, Akturk S. Fabrication of nanometer-size structures in metal thin films using femtosecond laser Bessel beams. Appl Phys Lett 2012; 100: 031104. doi: 10.1063/1.3678030
[9] Zamboni-Rached M, Recami E, Hernández-Figueroa H. New localized superluminal solutions to the wave equations with finite total energies and arbitrary frequencies. Eur Phys J D 2002; 21: 217–228. doi: 10.1140/epjd/e2002-00198-7
[10] Zamboni-Rached M, Fontana F, Recami E. Superluminal localized solutions to Maxwell equations propagating along a waveguide: the finite-energy case. Phys Rev E 2003; 67: 036620. doi: 10.1103/PhysRevE.67.036620
[11] Conti C, Trillo S. Nonspreading wave packets in three dimensions formed by an ultracold bose gas in an optical lattice. Phys Rev Lett 2004; 92: 120404. doi: 10.1103/PhysRevLett.92.120404
[12] Voronych O, Buraczewski A, Matuszewski M, Stobiñska M. Exciton-polariton localized wave packets in a microcavity. Phys Rev B 2016; 93: 245310. doi: 10.1103/PhysRevB.93.245310
[13] Efremidis NK, Siviloglou GA, Christodoulides DN. Exact X-wave solutions of the hyperbolic nonlinear Schrödinger equation with a supporting potential. Phys Lett A 2009; 373: 4073–4076. doi: 10.1016/j.physleta.2009.09.008
[14] Conti C. Generation and nonlinear dynamics of X waves of the Schrödinger equation. Phys Rev E 2004; 70: 046613. doi: 10.1103/PhysRevE.70.046613
[15] Sedov ES, Iorsh IV, Arakelian SM, Alodjants AP, Kavokin A. Hyperbolic metamaterials with bragg polaritons. Phys Rev Lett 2015; 114: 237402. doi: 10.1103/PhysRevLett.114.237402
[16] Couairon A, Gaižauskas E, Faccio D, Dubietis A, Di Trapani P. Nonlinear X-wave formation by femtosecond filamentation in Kerr-media. Phys Rev E 2006; 73: 016608. doi: 10.1103/PhysRevE.73.016608
[17] Kolesik M, Wright EM, Moloney JV. Dynamic nonlinear X waves for femtosecond pulse propagation in water. Phys Rev Lett 2004; 92: 253901. doi: 10.1103/PhysRevLett.92.253901
[18] Conti C, Trillo S, Di Trapani P, Valiulis G, Piskarskas A et al. Nonlinear electromagnetic X waves. Phys Rev Lett 2003; 90: 170406. doi: 10.1103/PhysRevLett.90.170406
[19] Di Trapani P, Valiulis G, Piskarskas A, Jedrkiewicz O, Trull J et al. Spontaneously generated X-shaped light bullets. Phys Rev Lett 2003; 91: 093904. doi: 10.1103/PhysRevLett.91.093904
[20] Ciattoni A, Conti C. Quantum electromagnetic X waves. J Opt Soc Am B 2007; 24: 2195–2198. doi: 10.1364/JOSAB.24.002195
[21] Sanvitto D, Kéna-Cohen S. The road towards polaritonic devices. Nat Mater 2016; 15: 1061–1073. doi: 10.1038/nmat4668
[22] Byrnes T, Kim NY, Yamamoto Y. Exciton-polariton condensates. Nat Phys 2014; 10: 803–813. doi: 10.1038/nphys3143
[23] Dagvadorj G, Fellows JM, Matyjaśkiewicz S, Marchetti FM, Carusotto I et al. Nonequilibrium phase transition in a two-dimensional driven open quantum system. Phys Rev X 2015; 5: 041028.
[24] Deng H, Haug H, Yamamoto Y. Exciton-polariton Bose-Einstein condensation. Rev Mod Phys 2010; 82: 1489–1537. doi: 10.1103/RevModPhys.82.1489
[25] Amo A, Sanvitto D, Laussy FP, Ballarini D, del Valle E et al. Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature 2009; 457: 291–295. doi: 10.1038/nature07640
[26] Kasprzak J, Richard M, Kundermann S, Baas A, Jeambrun P et al. Bose-Einstein condensation of exciton polaritons. Nature 2006; 443: 409–414. doi: 10.1038/nature05131
[27] Balili R, Hartwell V, Snoke D, Pfeiffer L, West K. Bose-Einstein condensation of microcavity polaritons in a trap. Science 2007; 316: 1007–1010. doi: 10.1126/science.1140990
[28] Kavokin AV, Baumberg JJ, Malpuech G, Laussy FP. Microcavities, 2 edn. Oxford, New York: Oxford University Press, 2017.
[29] Colas D, Laussy FP. Self-interfering wave packets. Phys Rev Lett 2016; 116: 026401. doi: 10.1103/PhysRevLett.116.026401
[30] Walker PM, Tinkler L, Skryabin DV, Yulin A, Royall B et al. Ultra-low-power hybrid light-matter solitons. Nat Commun 2015; 6: 8317. doi: 10.1038/ncomms9317
[31] Vladimirova M, Cronenberger S, Scalbert D, Kavokin KV, Miard A et al. Polariton-polariton interaction constants in microcavities. Phys Rev B 2010; 82: 075301. doi: 10.1103/PhysRevB.82.075301
[32] Amo A, Lefrère J, Pigeon S, Adrados C, Ciuti C et al. Superfluidity of polaritons in semiconductor microcavities. Nat Phys 2009; 5: 805–810. doi: 10.1038/nphys1364
[33] Berceanu AC, Dominici L, Carusotto I, Ballarini D, Cancellieri E et al. Multicomponent polariton superfluidity in the optical parametric oscillator regime. Phys Rev B 2015; 92: 035307. doi: 10.1103/PhysRevB.92.035307
[34] Amo A, Pigeon S, Sanvitto D, Sala VG, Hivet R et al. Polariton superfluids reveal quantum hydrodynamic solitons. Science 2011; 332: 1167–1170. doi: 10.1126/science.1202307
[35] Sanvitto D, Marchetti FM, Szymańsk MH, Tosi G, Baudisch M et al. Persistent currents and quantized vortices in a polariton superfluid. Nat Phys 2010; 6: 527–533. doi: 10.1038/nphys1668
[36] Whittaker CE, Dzurnak B, Egorov OA, Buonaiuto G, Walker PM et al. Polariton pattern formation and its statistical properties in a semiconductor microcavity. Preprint at: arXiv: 161203048, 2016.
[37] Dominici L, Petrov M, Matuszewski M, Ballarini D, De Giorgi M et al. Real-space collapse of a polariton condensate. Nat Commun 2015; 6: 8993. doi: 10.1038/ncomms9993
[38] Manni F, Lagoudakis KG, Liew TCH, André R, Deveaud-Plédran B. Spontaneous pattern formation in a polariton condensate. Phys Rev Lett 2011; 107: 106401. doi: 10.1103/PhysRevLett.107.106401
[39] Wertz E, Ferrier L, Solnyshkov DD, Johne R, Sanvitto D et al. Spontaneous formation and optical manipulation of extended polariton condensates. Nat Phys 2010; 6: 860–864. doi: 10.1038/nphys1750
[40] Ostrovskaya EA, Abdullaev J, Desyatnikov AS, Fraser MD, Kivshar YS. Dissipative solitons and vortices in polariton Bose-Einstein condensates. Phys Rev A 2012; 86: 013636. doi: 10.1103/PhysRevA.86.013636
[41] Sich M, Krizhanovskii DN, Skolnick MS, Gorbach AV, Hartley R et al. Observation of bright polariton solitons in a semiconductor microcavity. Nat Photonics 2012; 6: 50–55. doi: 10.1038/nphoton.2011.267
[42] Egorov OA, Gorbach AV, Lederer F, Skryabin DV. Two-dimensional localization of exciton polaritons in microcavities. Phys Rev Lett 2010; 105: 073903. doi: 10.1103/PhysRevLett.105.073903
[43] Ballarini D, De Giorgi M, Cancellieri E, Houdré R, Giacobino E et al. All-optical polariton transistor. Nat Commun 2013; 4: 1778. doi: 10.1038/ncomms2734
[44] Sun C, Wade MT, Lee Y, Orcutt JS, Alloatti L et al. Single-chip microprocessor that communicates directly using light. Nature 2015; 528: 534–538. doi: 10.1038/nature16454
[45] Colas D, Dominici L, Donati S, Pervishko AA, Liew TC et al. Polarization shaping of Poincaré beams by polariton oscillations. Light Sci Appl 2015; 4: e350, doi: 10.1038/lsa.2015.123.
[46] Dominici L, Colas D, Donati S, Cuartas JPR, De Giorgi M et al. Ultrafast control and Rabi oscillations of polaritons. Phys Rev Lett 2014; 113: 226401. doi: 10.1103/PhysRevLett.113.226401
[47] Voronych O, Buraczewski A, Matuszewski M, Stobińska M. Numerical modeling of exciton-polariton Bose-Einstein condensate in a microcavity. Comput Phys Commun 2017; 215: 246–258. doi: 10.1016/j.cpc.2017.02.021
[48] Bonaretti F, Faccio D, Clerici M, Biegert J, Di Trapani P. Spatiotemporal amplitude and phase retrieval of Bessel-X pulses using a Hartmann-Shack Sensor. Opt Express 2009; 17: 9804–9809. doi: 10.1364/OE.17.009804
[49] Mugnai D, Ranfagni A, Ruggeri R. Observation of superluminal behaviors in wave propagation. Phys Rev Lett 2000; 84: 4830–4833. doi: 10.1103/PhysRevLett.84.4830
[50] Bowlan P, Valtna-Lukner H, Lôhmus M, Piksarv P, Saari P et al. Measuring the spatiotemporal field of ultrashort Bessel-X pulses. Opt Lett 2009; 34: 2276–2278. doi: 10.1364/OL.34.002276
[51] Valtna-Lukner H, Bowlan P, Lôhmus M, Piksarv P, Trebino R et al. Direct spatiotemporal measurements of accelerating ultrashort Bessel-type light bullets. Opt Express 2009; 17: 14948–14955. doi: 10.1364/OE.17.014948
[52] Dominici L, Dagvadorj G, Fellows JM, Ballarini D, De Giorgi M et al. Vortex and half-vortex dynamics in a nonlinear spinor quantum fluid. Sci Adv 2015; 1: e1500807. doi: 10.1126/sciadv.1500807
[53] Rodrigues AS, Kevrekidis PG, Carretero-González R, Cuevas-Maraver J, Frantzeskakis DJ et al. From nodeless clouds and vortices to gray ring solitons and symmetry-broken states in two-dimensional polariton condensates. J Phys Condens Matter 2014; 26: 155801. doi: 10.1088/0953-8984/26/15/155801
[54] Lerario G, Ballarini D, Fieramosca A, Cannavale A, Genco A et al. High-speed flow of interacting organic polaritons. Light Sci Appl 2017; 6: e16212, doi: 10.1038/lsa.2016.212.
[55] Sinibaldi A, Danz N, Descrovi E, Munzert P, Schulz U et al. Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors. Sens Actuators B Chem 2012; 174: 292–298. doi: 10.1016/j.snb.2012.07.015
[56] Yu LB, Barakat E, Sfez T, Hvozdara L, Di Francesco J et al. Manipulating Bloch surface waves in 2D: a platform concept-based flat lens. Light Sci Appl 2014; 3: e124, doi: 10.1038/lsa.2014.5.
[57] Wang RX, Wang Y, Zhang DG, Si GY, Zhu LF et al. Diffraction-free Bloch surface waves. ACS Nano 2017; 11: 5383–5390. doi: 10.1021/acsnano.7b02358
[58] Lin J, Dellinger J, Genevet P, Cluzel B, de Fornel F et al. Cosine-gauss plasmon beam: a localized long-range nondiffracting surface wave. Phys Rev Lett 2012; 109: 093904. doi: 10.1103/PhysRevLett.109.093904
[59] Kishida H, Matsuzaki H, Okamoto H, Manabe T, Yamashita M et al. Gigantic optical nonlinearity in one-dimensional Mott-Hubbard insulators. Nature 2000; 405: 929–932. doi: 10.1038/35016036
[60] Deng L, Hagley EW, Wen J, Trippenbach M, Band Y et al. Four-wave mixing with matter waves. Nature 1999; 398: 218–220. doi: 10.1038/18395
[61] Gottesman D. The Heisenberg representation of quantum computers. Preprint at: arXiv: quant-ph/9807006, 1998.