[1] Neubrech, F. et al. Surface-enhanced infrared spectroscopy using resonant nanoantennas. Chem. Rev. 117, 5110-5145 (2017). doi: 10.1021/acs.chemrev.6b00743
[2] Yang, X. X. et al. Nanomaterial-based plasmon-enhanced infrared spectroscopy. Adv. Mater. 30, 1704896 (2018). doi: 10.1002/adma.201704896
[3] Fallah, M. A. et al. Devising self-assembled-monolayers for surface-enhanced infrared spectroscopy of pH-driven poly-L-lysine conformational changes. Langmuir 32, 7356-7364 (2016). doi: 10.1021/acs.langmuir.6b01742
[4] Rodrigo, D. et al. Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces. Nat. Commun. 9, 2160 (2018). doi: 10.1038/s41467-018-04594-x
[5] Hassan, M. et al. Detecting bacteria contamination on medical device surfaces using an integrated fiber-optic mid-infrared spectroscopy sensing method. Sens. Acutat. Chem. 231, 646-654 (2016). doi: 10.1016/j.snb.2016.03.044
[6] Bacsik, Z. et al. Comparison of open path and extractive long‐path ftir techniques in detection of air pollutants. Appl. Spectrosc. Rev. 41, 77-97 (2006). doi: 10.1080/05704920500385494
[7] Dregely, D. et al. Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures. Nat. Commun. 4, 2237 (2013). doi: 10.1038/ncomms3237
[8] Neuman, T. et al. Importance of plasmonic scattering for an optimal enhancement of vibrational absorption in seira with linear metallic antennas. J. Phys. Chem. C. 119, 26652-26662 (2015). doi: 10.1021/acs.jpcc.5b08344
[9] Neubrech, F. et al. Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection. Phys. Rev. Lett. 101, 157403 (2008). doi: 10.1103/PhysRevLett.101.157403
[10] Maß, T. W. W. & Taubner, T. Incident angle-tuning of infrared antenna array resonances for molecular sensing. ACS Photonics 2, 1498-1504 (2015). doi: 10.1021/acsphotonics.5b00399
[11] Cubukcu, E. et al. Split ring resonator sensors for infrared detection of single molecular monolayers. Appl. Phys. Lett. 95, 043113 (2009). doi: 10.1063/1.3194154
[12] Agrawal, A. et al. Resonant coupling between molecular vibrations and localized surface plasmon resonance of faceted metal oxide nanocrystals. Nano Lett. 17, 2611-2620 (2017). doi: 10.1021/acs.nanolett.7b00404
[13] Li, N. N. et al. Infrared-responsive colloidal silver nanorods for surface-enhanced infrared absorption. Adv. Opt. Mater. 6, 1800436 (2018). doi: 10.1002/adom.201800436
[14] Akselrod, G. M. et al. Probing the mechanisms of large purcell enhancement in plasmonic nanoantennas. Nat. Photonics 8, 835-840 (2014). doi: 10.1038/nphoton.2014.228
[15] Baumberg, J. J. et al. Extreme nanophotonics from ultrathin metallic gaps. Nat. Mater. 18, 668-678 (2019). doi: 10.1038/s41563-019-0290-y
[16] Liu, N. et al. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10, 2342-2348 (2010). doi: 10.1021/nl9041033
[17] Brown, L. V. et al. Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA). Nano Lett. 15, 1272-1280 (2015). doi: 10.1021/nl504455s
[18] Chen, X. H. et al. Plasmonic vertically coupled complementary antennas for dual-mode infrared molecule sensing. ACS Nano 11, 8034-8046 (2017). doi: 10.1021/acsnano.7b02687
[19] Dong, L. L. et al. Nanogapped au antennas for ultrasensitive surface-enhanced infrared absorption spectroscopy. Nano Lett. 17, 5768-5774 (2017). doi: 10.1021/acs.nanolett.7b02736
[20] Yoo, D. et al. High-contrast infrared absorption spectroscopy via mass-produced coaxial zero-mode resonators with sub-10 nm gaps. Nano Lett. 18, 1930-1936 (2018). doi: 10.1021/acs.nanolett.7b05295
[21] Zhu, Y. B. et al. Optical conductivity-based ultrasensitive mid-infrared biosensing on a hybrid metasurface. Light Sci. Appl. 7, 67 (2018). doi: 10.1038/s41377-018-0066-1
[22] Ji, D. X. et al. Efficient mid-infrared light confinement within sub-5-nm gaps for extreme field enhancement. Adv. Opt. Mater. 5, 1700223 (2017). doi: 10.1002/adom.201700223
[23] Enders, D. & Pucci, A. Surface enhanced infrared absorption of octadecanethiol on wet-chemically prepared au nanoparticle films. Appl. Phys. Lett. 88, 184104 (2006). doi: 10.1063/1.2201880
[24] Adato, R. et al. Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays. Proc. Natl Acad. Sci. USA 106, 19227-19232 (2009). doi: 10.1073/pnas.0907459106
[25] Rodrigo, D. et al. Mid-infrared plasmonic biosensing with graphene. Science 349, 165-168 (2015). doi: 10.1126/science.aab2051
[26] Eftekhari, F. et al. Nanoholes as nanochannels: flow-through plasmonic sensing. Anal. Chem. 81, 4308-4311 (2009). doi: 10.1021/ac900221y
[27] Le, T. H. H. et al. Metamaterials-enhanced infrared spectroscopic study of nanoconfined molecules by plasmonics-nanofluidics hydrid device. ACS Photonics 5, 3179-3188 (2018). doi: 10.1021/acsphotonics.8b00398
[28] Shih, K. et al. Mir plasmonic liquid sensing in nano-metric space driven by capillary force. J. Phys. D: Appl. Phys. 52, 394001 (2019). doi: 10.1088/1361-6463/ab2ea1
[29] Barik, A. et al. Graphene-edge dielectrophoretic tweezers for trapping of biomolecules. Nat. Commun. 8, 1867 (2017). doi: 10.1038/s41467-017-01635-9
[30] Nadappuram, B. P. et al. Nanoscale tweezers for single-cell biopsies. Nat. Nanotechnol. 14, 80-88 (2019). doi: 10.1038/s41565-018-0315-8
[31] Juan, M. L. et al. Self-induced back-action optical trapping of dielectric nanoparticles. Nat. Phys. 5, 915-919 (2009). doi: 10.1038/nphys1422
[32] Saleh, A. A. & Dionne, J. A. Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures. Nano Lett. 12, 5581-5586 (2012). doi: 10.1021/nl302627c
[33] Verschueren, D. , Shi, X. & Dekker, C. Nano-optical tweezing of single proteins in plasmonic nanopores. Small Methods 3, 1800465 (2019). doi: 10.1002/smtd.201800465
[34] Tantussi, F. et al. Long-range capture and delivery of water-dispersed nano-objects by microbubbles generated on 3D plasmonic surfaces. ACS Nano 12, 4116-4122 (2018). doi: 10.1021/acsnano.7b07893
[35] De Angelis, F. et al. Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing sers structures. Nat. Photonics 5, 682-687 (2011). doi: 10.1038/nphoton.2011.222
[36] De Ninno, A. et al. An integrated superhydrophobic-plasmonic biosensor for mid-infrared protein detection at the femtomole level. Phys. Chem. Chem. Phys. 17, 21337-21342 (2015). doi: 10.1039/C4CP05023A
[37] Giannini, V. et al. Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach. Nano Lett. 11, 2835-2840 (2011). doi: 10.1021/nl201207n
[38] Pack, M. et al. Colloidal drop deposition on porous substrates: competition among particle motion, evaporation, and infiltration. Langmuir 31, 7953-7961 (2015). doi: 10.1021/acs.langmuir.5b01846
[39] Chen, C. T. , Chieng, C. C. & Tseng, F. G. Uniform solute deposition of evaporable droplet in nanoliter wells. J. Microelectromech. Syst. 16, 1209-1218 (2007). doi: 10.1109/JMEMS.2007.904327
[40] Long, G. L. & Winefordner, J. D. Limit of detection A closer look at the IUPAC definition. Anal. Chem. 55, 712A-724A (1983).
[41] Jensen, P. S. , Bak, J. & Andersson-Engels, S. Influence of temperature on water and aqueous glucose absorption spectra in the near- and mid-infrared regions at physiologically relevant temperatures. Appl. Spectrosc. 57, 28-36 (2003). doi: 10.1366/000370203321165179