[1] Scholes, G. D. et al. Using coherence to enhance function in chemical and biophysical systems. Nature 543, 647–656 (2017). doi: 10.1038/nature21425
[2] Cocker, T. L., Peller, D., Yu, P., Repp, J. & Huber, R. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging. Nature 539, 263–267 (2016). doi: 10.1038/nature19816
[3] Falke, S. M. et al. Coherent ultrafast charge transfer in an organic photovoltaic blend. Science 344, 1001–1005 (2014). doi: 10.1126/science.1249771
[4] Rozzi, C. A. et al. Quantum coherence controls the charge separation in a prototypical artificial light-harvesting system. Nat. Commun. 4, 1602 (2013). doi: 10.1038/ncomms2603
[5] Calegari, F. et al. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses. Science 346, 336–339 (2014). doi: 10.1126/science.1254061
[6] Schiffrin, A. et al. Optical-field-induced current in dielectrics. Nature 493, 70–74 (2013). doi: 10.1038/nature11567
[7] Sommer, A. et al. Attosecond nonlinear polarization and light-matter energy transfer in solids. Nature 534, 86–90 (2016). doi: 10.1038/nature17650
[8] Zewail, A. H. Four-dimensional electron microscopy. Science 328, 187–193 (2010). doi: 10.1126/science.1166135
[9] Barwick, B. & Zewail, A. H. Photonics and plasmonics in 4D ultrafast electron microscopy. ACS Photon 2, 1391–1402 (2015). doi: 10.1021/acsphotonics.5b00427
[10] Ryabov, A. & Baum, P. Electron microscopy of electromagnetic waveforms. Science 353, 374–377 (2016). doi: 10.1126/science.aaf8589
[11] Müller, M., Paarmann, A. & Ernstorfer, R. Femtosecond electrons probing currents and atomic structure in nanomaterials. Nat. Commun. 5, 5292 (2014). doi: 10.1038/ncomms6292
[12] Herink, G., Solli, D. R., Gulde, M. & Ropers, C. Field-driven photoemission from nanostructures quenches the quiver motion. Nature 483, 190–193 (2012). doi: 10.1038/nature10878
[13] Hommelhoff, P., Sortais, Y., Aghajani-Talesh, A. & Kasevich, M. A. Field emission tip as a nanometer source of free electron femtosecond pulses. Phys. Rev. Lett. 96, 077401 (2006). doi: 10.1103/PhysRevLett.96.077401
[14] Ropers, C., Solli, D. R., Schulz, C. P., Lienau, C. & Elsaesser, T. Localized multiphoton emission of femtosecond electron pulses from metal nanotips. Phys. Rev. Lett. 98, 043907 (2007). doi: 10.1103/PhysRevLett.98.043907
[15] Vogelsang, J. et al. Ultrafast electron emission from a sharp metal nanotaper driven by adiabatic nanofocusing of surface plasmons. Nano. Lett. 15, 4685–4691 (2015). doi: 10.1021/acs.nanolett.5b01513
[16] Swanwick, M. E. et al. Nanostructured ultrafast silicon-tip optical field-emitter arrays. Nano. Lett. 14, 5035–5043 (2014). doi: 10.1021/nl501589j
[17] Rybka, T. et al. Sub-cycle optical phase control of nanotunnelling in the single-electron regime. Nat. Photon 10, 667–670 (2016). doi: 10.1038/nphoton.2016.174
[18] Scholes, G. D., Fleming, G. R., Olaya-Castro, A. & Van Grondelle, R. Lessons from nature about solar light harvesting. Nat. Chem. 3, 763–774 (2011). doi: 10.1038/nchem.1145
[19] Gélinas, S. et al. Ultrafast long-range charge separation in organic semiconductor photovoltaic diodes. Science 343, 512–516 (2014). doi: 10.1126/science.1246249
[20] Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010). doi: 10.1038/nmat2629
[21] Wu, K., Chen, J., McBride, J. R. & Lian, T. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 349, 632–635 (2015). doi: 10.1126/science.aac5443
[22] Sivis, M., Duwe, M., Abel, B. & Ropers, C. Extreme-ultraviolet light generation in plasmonic nanostructures. Nat. Phys. 9, 304–309 (2013). doi: 10.1038/nphys2590
[23] Feist, A. et al. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope. Nature 521, 200–203 (2015). doi: 10.1038/nature14463
[24] Piazza, L. et al. Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field. Nat. Commun. 6, 6407 (2015). doi: 10.1038/ncomms7407
[25] Piglosiewicz, B. et al. Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures. Nat. Photon 8, 37–42 (2014). doi: 10.1038/nphoton.2013.288
[26] Lummen, T. T. A. et al. Imaging and controlling plasmonic interference fields at buried interfaces. Nat. Commun. 7, 13156 (2016). doi: 10.1038/ncomms13156
[27] Spektor, G. et al. Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices. Science 355, 1187–1191 (2017). doi: 10.1126/science.aaj1699
[28] Feist, A. et al. Ultrafast transmission electron microscopy using a laser-driven field emitter: femtosecond resolution with a high coherence electron beam. Ultramicroscopy 176, 63–73 (2017). doi: 10.1016/j.ultramic.2016.12.005
[29] Raman, R. K., Tao, Z. S., Han, T. R. & Ruan, C. Y. Ultrafast imaging of photoelectron packets generated from graphite surface. Appl. Phys. Lett. 95, 181108 (2009). doi: 10.1063/1.3259779
[30] Aeschlimann, M. et al. Adaptive subwavelength control of nano-optical fields. Nature 446, 301–304 (2007). doi: 10.1038/nature05595
[31] Kubo, A. et al. Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film. Nano. Lett. 5, 1123–1127 (2005). doi: 10.1021/nl0506655
[32] Aeschlimann, M. et al. Spatiotemporal control of nanooptical excitations. Proc. Natl Acad. Sci. USA 107, 5329–5333 (2010). doi: 10.1073/pnas.0913556107
[33] Fukumoto, K., Yamada, Y., Onda, K. & Koshihara, S. Y. Direct imaging of electron recombination and transport on a semiconductor surface by femtosecond time-resolved photoemission electron microscopy. Appl. Phys. Lett. 104, 053117 (2014). doi: 10.1063/1.4864279
[34] Stockman, M. I. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 93, 137404 (2004). doi: 10.1103/PhysRevLett.93.137404
[35] Ropers, C. et al. Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. Nano. Lett. 7, 2784–2788 (2007). doi: 10.1021/nl071340m
[36] Schröder, B., Sivis, M., Bormann, R., Schäfer, S. & Ropers, C. An ultrafast nanotip electron gun triggered by grating-coupled surface plasmons. Appl. Phys. Lett. 107, 231105 (2015). doi: 10.1063/1.4937121
[37] Müller, M., Kravtsov, V., Paarmann, A., Raschke, M. B. & Ernstorfer, R. Nanofocused plasmon-driven sub-10 fs electron point source. ACS Photon 3, 611–619 (2016). doi: 10.1021/acsphotonics.5b00710
[38] Vogelsang, J. et al. High passive CEP stability from a few-cycle, tunable NOPA-DFG system for observation of CEP-effects in photoemission. Opt. Express 22, 25295–25306 (2014). doi: 10.1364/OE.22.025295
[39] Schmidt, S. et al. Adiabatic nanofocusing on ultrasmooth single-crystalline gold tapers creates a 10-nm-sized light source with few-cycle time resolution. ACS Nano 6, 6040–6048 (2012). doi: 10.1021/nn301121h
[40] Quinonez, E., Handali, J. & Barwick, B. Femtosecond photoelectron point projection microscope. Rev. Sci. Instrum. 84, 103710 (2013). doi: 10.1063/1.4827035
[41] Bainbridge, A. R., Barlow Myers, C. W. & Bryan, W. A. Femtosecond few- to single-electron point-projection microscopy for nanoscale dynamic imaging. Struct. Dyn. 3, 023612 (2016). doi: 10.1063/1.4947098
[42] Longchamp, J. N. et al. Imaging proteins at the single-molecule level. Proc. Natl Acad. Sci. USA 114, 1474–1479 (2017). doi: 10.1073/pnas.1614519114
[43] Okano, Y., Hironaka, Y., Kondo, K. I. & Nakamura, K. G. Electron imaging of charge-separated field on a copper film induced by femtosecond laser irradiation. Appl. Phys. Lett. 86, 141501 (2005). doi: 10.1063/1.1897058
[44] Hebeisen, C. T. et al. Direct visualization of charge distributions during femtosecond laser ablation of a Si (100) surface. Phys. Rev. B 78, 081403 (2008). doi: 10.1103/PhysRevB.78.081403
[45] Chang, K., Murdick, R. A., Tao, Z. S., Han, T. R. T. & Ruan, C. Y. Ultrafast electron diffractive voltammetry: general formalism and applications. Mod. Phys. Lett. B 25, 2099–2129 (2011). doi: 10.1142/S0217984911027492
[46] Centurion, M., Reckenthaeler, P., Trushin, S. A., Krausz, F. & Fill, E. E. Picosecond electron deflectometry of optical-field ionized plasmas. Nat. Photon 2, 315–318 (2008). doi: 10.1038/nphoton.2008.77