[1] Beniam, I. et al. Laser printing of 3D metallic interconnects. Proceedings of SPIE 9738, Laser 3D Manuf. III. San Francisco, California, United States: SPIE, 97380I (2016).
[2] Charipar, K. M. et al. Laser-induced forward transfer (LIFT) of 3D microstructures. Proceedings of SPIE 10523, Laser 3D Manuf. V. San Francisco, California, United States: SPIE, 105230R (2018).
[3] Morales, A. M. & Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208-211 (1998). doi: 10.1126/science.279.5348.208
[4] Wender, H. et al. Synthesis of gold nanoparticles by laser ablation of an Au foil inside and outside ionic liquids. Nanoscale 3, 1240-1245 (2011). doi: 10.1039/c0nr00786b
[5] Zhang, D. S., Gökce, B. & Barcikowski, S. Laser Synthesis and Processing of Colloids: Fundamentals and Applications. Chem. Rev 117, 3990-4103 (2017). doi: 10.1021/acs.chemrev.6b00468
[6] Huang, H. K. & Lai, J. Mechanism study of nanomaterial synthesis by pulsed laser ablation in liquid. Proceedings of SPIE 10813, Adv. Laser Process. Manuf. II. Beijing: SPIE, 1081318 (2018).
[7] Gemini, L. et al. Upconversion Nanoparticles Synthesized by Ultrashort Pulsed Laser Ablation in Liquid: Effect of the Stabilizing Environment. ChemPhysChem 18, 1210-1216 (2017). doi: 10.1002/cphc.201601266
[8] Gelesky, M. A. et al. Laser-induced fragmentation of transition metal nanoparticles in ionic liquids. J. Am. Chem. Soc 127, 4588-4589 (2005). doi: 10.1021/ja042711t
[9] Wang, H. Q. et al. Selective Pulsed Heating for the Synthesis of Semiconductor and Metal Submicrometer Spheres. Angew. Chemie 122, 6505-6508 (2010). doi: 10.1002/ange.201002963
[10] Tsuji, T. et al. Preparation of submicron-sized spherical particles of gold using laser-induced melting in liquids and low-toxic stabilizing reagent. Appl. Surf. Sci 348, 10-15 (2015). doi: 10.1016/j.apsusc.2015.02.057
[11] Lin, T. C. et al. Aluminum with dispersed nanoparticles by laser additive manufacturing. Nat. Commun 10, 4124 (2019). doi: 10.1038/s41467-019-12047-2
[12] Yang, S. & Zhang, J. Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technique for deposition of hybrid nanostructures. Front. Nanosci. Nanotechnol 3, 1-9 (2017).
[13] Zou, Y. S. et al. Structural, electrical and optical properties of Mg-doped CuAlO2 films by pulsed laser deposition. RSC Adv 40, 41294-41300 (2014).
[14] Charipar, N. A. et al. Laser processing of VO2 thin films for THz devices and metamaterials. Proceedings of SPIE 10019, Laser Appl. Microelectron. Optoelectron. Manuf. (LAMOM) XXII. San Francisco, California, United States: SPIE, 1009102 (2017).
[15] Gianinoni, I. & Musci, M. Laser-assisted CVD of amorphous materials. J. Non. Cryst. Solids 77–78, 743-752 (1985).
[16] Lin, L. H, et al. Optothermoplasmonic Nanolithography for On-Demand Patterning of 2D Materials. Adv. Funct. Mater 28, 1803990 (2018). doi: 10.1002/adfm.201803990
[17] Gattass, R. R. & Mazur, E. Femtosecond laser micromachining in transparent materials. Nat. Photonics 2, 219-225 (2008). doi: 10.1038/nphoton.2008.47
[18] Zuo, P. et al. Maskless Micro/Nanopatterning and Bipolar Electrical Rectification of MoS2 Flakes through Femtosecond Laser Direct Writing. ACS Appl. Mater. Interfaces 11, 39334-39341 (2019). doi: 10.1021/acsami.9b13059
[19] Seo, B. H., Youn, J. & Shim, M. Direct laser writing of air-stable p-n junctions in graphene. ACS Nano 8, 8831-8836 (2014). doi: 10.1021/nn503574p
[20] Wei, Y. et al. Laser direct-writing electrode for rapid customization of a photodetector. Opt. Lett 44, 683-686 (2019). doi: 10.1364/OL.44.000683
[21] Wanke, M. C. et al. Laser rapid prototyping of photonic band-gap microstructures. Science 275, 1284-1286 (1997). doi: 10.1126/science.275.5304.1284
[22] Lim, K. Y. et al. Laser Pruning of Carbon Nanotubes as a Route to Static and Movable Structures. Adv. Mater 15, 300-303 (2003). doi: 10.1002/adma.200390072
[23] Zhang, X. et al. Direct selective laser sintering of hexagonal barium titanate ceramics. J. Am. Ceram. Soc 104, 1271-1280 (2021). doi: 10.1111/jace.17568
[24] Li, Q. F. et al. Digital laser micro- and nanoprinting. Nanophotonics 8, 27-44 (2019).
[25] Urban, A. S. et al. Laser printing single gold nanoparticles. Nano Lett 10, 4794-4798 (2010). doi: 10.1021/nl1030425
[26] Cao, L. J. et al. Direct laser-patterned micro-supercapacitors from paintable MoS2 films. Small 9, 2905-2910 (2013). doi: 10.1002/smll.201203164
[27] Xiong, W. et al. Laser-Directed Assembly of Aligned Carbon Nanotubes in Three Dimensions for Multifunctional Device Fabrication. Adv. Mater 28, 2002-2009 (2016). doi: 10.1002/adma.201505516
[28] Zuo, P. et al. Shape-Controllable Gold Nanoparticle-MoS2 Hybrids Prepared by Tuning Edge-Active Sites and Surface Structures of MoS2 via Temporally Shaped Femtosecond Pulses. ACS Appl. Mater. Interfaces 9, 7447-7455 (2017). doi: 10.1021/acsami.6b14805
[29] Park, S. et al. Micropatterning of metal nanoparticle ink by laser-induced thermocapillary flow. Nanomaterials 8, 645 (2018). doi: 10.3390/nano8090645
[30] Cho, S. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 349, 625-628 (2015). doi: 10.1126/science.aab3175
[31] Castellanos-Gomez, A. et al. Laser-thinning of MoS2: On demand generation of a single-layer semiconductor. Nano Lett 12, 3187-3192 (2012). doi: 10.1021/nl301164v
[32] Wolfbeis, O. S. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev 44, 4743-4768 (2015). doi: 10.1039/C4CS00392F
[33] Pratiwi, F. W. et al. Recent advances in the use of fluorescent nanoparticles for bioimaging. Nanomedicine 14, 1759-1769 (2019). doi: 10.2217/nnm-2019-0105
[34] Wang, F. et al. Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst 135, 1839-1854 (2010). doi: 10.1039/c0an00144a
[35] Feng, W., Zhu, X. J. & Li, F. Y. Recent advances in the optimization and functionalization of upconversion nanomaterials for in vivo bioapplications. NPG Asia Mater. 5, e75, http://dx.doi.org/10.1038/am.2013.63 (2013).
[36] Senellart, P., Solomon, G. & White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol 12, 1026-1039 (2017). doi: 10.1038/nnano.2017.218
[37] Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nat. Photonics 10, 631-641 (2016). doi: 10.1038/nphoton.2016.186
[38] Zhang, G. et al. Material platforms for defect qubits and single-photon emitters. Appl. Phys. Rev. 7, 031308, http://dx.doi.org/10.1063/5.0006075 (2020).
[39] Choi, M. K. et al. Flexible quantum dot light-emitting diodes for next-generation displays. npj Flex. Electron 2, 10 (2018). doi: 10.1038/s41528-018-0023-3
[40] Li, Y. F., Feng, J. & Sun, H. B. Perovskite quantum dots for light-emitting devices. Nanoscale 11, 19119-19139 (2019). doi: 10.1039/C9NR06191F
[41] Zhao, B. & Tan, Z. Fluorescent Carbon Dots: Fantastic Electroluminescent Materials for Light-Emitting Diodes. Adv. Sci 8, 2001977 (2021). doi: 10.1002/advs.202001977
[42] Zhang, Q. et al. Fluorescent nanomaterial-derived white light-emitting diodes: What’s going on. J. Mater. Chem. C 2, 4358-4373 (2014). doi: 10.1039/C4TC00048J
[43] Lozano, G. et al. Metallic nanostructures for efficient LED lighting. Light Sci. Appl 5, e16080 (2016). doi: 10.1038/lsa.2016.80
[44] Liu, Y. et al. Inkjet-printed unclonable quantum dot fluorescent anti-counterfeiting labels with artificial intelligence authentication. Nat. Commun 10, 2409 (2019). doi: 10.1038/s41467-019-10406-7
[45] Ren, W. et al. Optical Nanomaterials and Enabling Technologies for High-Security-Level Anticounterfeiting. Adv. Mater 32, 1901430 (2020). doi: 10.1002/adma.201901430
[46] Zhou, B. et al. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol 10, 924-936 (2015). doi: 10.1038/nnano.2015.251
[47] Kumar, P., Singh, S. & Gupta, B. K. Future prospects of luminescent nanomaterial based security inks: From synthesis to anti-counterfeiting applications. Nanoscale 8, 14297-14340 (2016). doi: 10.1039/C5NR06965C
[48] Shikha, S. et al. Versatile design and synthesis of nano-barcodes. Chem. Soc. Rev 46, 7054-7093 (2017). doi: 10.1039/C7CS00271H
[49] Alivisatos, A. P. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem 100, 13226-13239 (1996). doi: 10.1021/jp9535506
[50] Bruchez, M. Jr. et al. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013-2016 (1998). doi: 10.1126/science.281.5385.2013
[51] Qu, L. H. & Peng, X. G. Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc 124, 2049-2055 (2002). doi: 10.1021/ja017002j
[52] Tang, Z. Y., Kotov, N. A. & Giersig, M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 297, 237-240 (2002). doi: 10.1126/science.1072086
[53] Baskoutas, S. & Terzis, A. F. Size-dependent band gap of colloidal quantum dots. J. Appl. Phys. 99, 013708, http://dx.doi.org/10.1063/1.2158502 (2006).
[54] Smith, A. M. & Nie, S. M. Semiconductor nanocrystals: Structure, properties, and band gap engineering. Acc. Chem. Res 43, 190-200 (2010). doi: 10.1021/ar9001069
[55] Yan, F. Y. et al. The fluorescence mechanism of carbon dots, and methods for tuning their emission color: a review. Microchim. Acta 186, 583, http://dx.doi.org/10.1007/s00604-019-3688-y (2019).
[56] Liu, M. L. et al. Carbon dots: Synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chem 21, 449-471 (2019). doi: 10.1039/C8GC02736F
[57] Song, Z., Zhao, J. & Liu, Q. L. Luminescent perovskites: Recent advances in theory and experiments. Inorg. Chem. Front 6, 2969-3011 (2019). doi: 10.1039/C9QI00777F
[58] Aamir, M. et al. It is an All‐Rounder! On the Development of Metal Halide Perovskite‐Based Fluorescent Sensors and Radiation Detectors. Adv. Opt. Mater. 9, 2101276 (2021). doi: 10.1002/adom.202101276
[59] Kang, D. et al. Lanthanide-Doped Upconversion Nanomaterials: Recent Advances and Applications. Biochip J 14, 124-135 (2020). doi: 10.1007/s13206-020-4111-9
[60] Wen, S. H. et al. Advances in highly doped upconversion nanoparticles. Nat. Commun 9, 2415 (2018). doi: 10.1038/s41467-018-04813-5
[61] Wang, F. & Liu, X. G. Multicolor tuning of lanthanide-doped nanoparticles by single wavelength excitation. Acc. Chem. Res 47, 1378-1385 (2014). doi: 10.1021/ar5000067
[62] Bettinelli, M., Carlos, L. & Liu, X. G. Lanthanide-doped upconversion nanoparticles. Phys. Today 68, 38-44 (2015).
[63] Haase, M. & Schäfer, H. Upconverting nanoparticles. Angew. Chemie - Int. Ed 50, 5808-5829 (2011). doi: 10.1002/anie.201005159
[64] Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. Nano Lett 10, 1271-1275 (2010). doi: 10.1021/nl903868w
[65] Onwudiwe, D. C. et al. Nanosecond laser irradiation synthesis of CdS nanoparticles in a PVA system. Appl. Surf. Sci 290, 18-26 (2014). doi: 10.1016/j.apsusc.2013.10.165
[66] Seah, M. H. R. et al. Blue micro-highlighting in alumina-GO hybrid empowered by focused laser beam. J. Lumin 205, 357-366 (2019). doi: 10.1016/j.jlumin.2018.09.041
[67] Lim, S. X. et al. Laser assisted blending of Ag nanoparticles in an alumina veil: a highly fluorescent hybrid. Nanoscale 10, 18145-18152 (2018). doi: 10.1039/C8NR03245A
[68] Lim, S. X. et al. Unlocking the potential of carbon incorporated silver-silver molybdate nanowire with light. Appl. Mater. Today 20, 100670 (2020). doi: 10.1016/j.apmt.2020.100670
[69] Liu, Y. et al. Advances in carbon dots: From the perspective of traditional quantum dots. Mater. Chem. Front 4, 1586-1613 (2020). doi: 10.1039/D0QM00090F
[70] Yu, H. W. et al. Preparation of carbon dots by non-focusing pulsed laser irradiation in toluene. Chem. Commun 52, 819-822 (2016). doi: 10.1039/C5CC08384B
[71] Yu, M. et al. Universal liquid-phase laser fabrication of various nano-metals encapsulated by ultrathin carbon shells for deep-UV plasmonics. Nanoscale 9, 8716-8722 (2017). doi: 10.1039/C7NR01966A
[72] Castro, H. P. S. et al. Synthesis and Characterisation of Fluorescent Carbon Nanodots Produced in Ionic Liquids by Laser Ablation. Chem. - A Eur. J 22, 138-143 (2016). doi: 10.1002/chem.201503286
[73] Castro, H. P. S. et al. Optical characterization of carbon quantum dots in colloidal suspensions. Opt. Mater. Express 7, 401-408 (2017). doi: 10.1364/OME.7.000401
[74] Mahdavi, M., Kimiagar, S. & Abrinaei, F. Preparation of Few-Layered Wide Bandgap MoS2 with nanometer lateral dimensions by applying laser irradiation. Crystals 10, 164 (2020). doi: 10.3390/cryst10030164
[75] Samani, M. M. et al. Strong photoluminescence from diameter- modulated single-walled carbon nanotubes. Appl. Phys. Lett 101, 043123 (2012). doi: 10.1063/1.4739522
[76] Lu, J. et al. Improved photoelectrical properties of MoS2 films after laser micromachining. ACS Nano 8, 6334-6343 (2014). doi: 10.1021/nn501821z
[77] Hu, L. L. et al. Laser thinning and patterning of MoS2 with layer-by-layer precision. Sci. Rep 7, 15538 (2017). doi: 10.1038/s41598-017-15350-4
[78] Li, D. W. et al. In situ imaging and control of layer-by-layer femtosecond laser thinning of graphene. Nanoscale 7, 3651-3659 (2015). doi: 10.1039/C4NR07078J
[79] Lu, J. P. et al. Atomic healing of defects in transition metal dichalcogenides. Nano Lett 15, 3524-3532 (2015). doi: 10.1021/acs.nanolett.5b00952
[80] Gong, L. L. et al. Emergence of photoluminescence on bulk MoS2 by laser thinning and gold particle decoration. Nano Res 11, 4574-4586 (2018). doi: 10.1007/s12274-018-2037-5
[81] Sow, B. M. et al. Enriched Fluorescence Emission from WS2 Monoflake Empowered by Au Nanoexplorers. Adv. Opt. Mater 5, 1700156 (2017). doi: 10.1002/adom.201700156
[82] Nagareddy, V. K. et al. Humidity-Controlled Ultralow Power Layer-by-Layer Thinning, Nanopatterning and Bandgap Engineering of MoTe2. Adv. Funct. Mater 28, 1804434 (2018). doi: 10.1002/adfm.201804434
[83] Sunamura, K. et al. Laser-induced electrochemical thinning of MoS2. J. Mater. Chem. C 4, 3268-3273 (2016). doi: 10.1039/C5TC04409J
[84] Huang, S., Zhao, X. & Zheng, Y. Optoelectronic thinning of transition metal dichalcogenides for device fabrication. Proc. IEEE Conf. Nanotechnol. 2020-July, 19–23 (2020).
[85] Wu, S. S. et al. Photo-induced exfoliation of monolayer transition metal dichalcogenide semiconductors. 2D Mater 6, 045052 (2019). doi: 10.1088/2053-1583/ab42b6
[86] Venkatakrishnan, A. et al. Microsteganography on WS2 Monolayers Tailored by Direct Laser Painting. ACS Nano 11, 713-720 (2017). doi: 10.1021/acsnano.6b07118
[87] Lu, J. P. et al. Bandgap Engineering of Phosphorene by Laser Oxidation toward Functional 2D Materials. ACS Nano 9, 10411-10421 (2015). doi: 10.1021/acsnano.5b04623
[88] Lim, S. X. et al. Polychromic carbon black: Laser galvanized multicolour fluorescence display. Nano Res 12, 733-740 (2019). doi: 10.1007/s12274-018-2239-x
[89] Zhang, H. B. et al. Laser-induced fluorescence of fused silica irradiated by ArF excimer laser. J. Appl. Phys. 110, 013107, http://dx.doi.org/10.1063/1.3608163 (2011).
[90] Zhou, X. Y. et al. Laser-induced point defects in fused silica irradiated by UV laser in vacuum. Adv. Condens. Matter Phys. 2014, 853764, http://dx.doi.org/10.1155/2014/853764 (2014).
[91] Castelletto, S. et al. Photoluminescence in hexagonal silicon carbide by direct femtosecond laser writing. Opt. Lett 43, 6077-6080 (2018). doi: 10.1364/OL.43.006077
[92] Buividas, R. et al. Photoluminescence from voids created by femtosecond-laser pulses inside cubic-BN. Opt. Lett 40, 5711-5713 (2015). doi: 10.1364/OL.40.005711
[93] Saleem, U. et al. Light emission from localised point defects induced in GaN crystal by a femtosecond-pulsed laser. Opt. Mater. Express 8, 2703-2712 (2018). doi: 10.1364/OME.8.002703
[94] Chen, Y. C. et al. Laser writing of coherent colour centres in diamond. Nat. Photonics 11, 77-80 (2017). doi: 10.1038/nphoton.2016.234
[95] Chen, Y. C. et al. Laser writing of individual atomic defects in a crystal with near-unity yield. Optica 6, 662-667 (2019). doi: 10.1364/OPTICA.6.000662
[96] Castelletto, S. et al. Color centers enabled by direct femto-second laser writing in wide bandgap semiconductors. Nanomaterials 11, 72 (2021).
[97] Chen, Y. C. et al. Laser Writing of Scalable Single Color Centers in Silicon Carbide. Nano Lett 19, 2377-2383 (2019). doi: 10.1021/acs.nanolett.8b05070
[98] Hou, S. Y. et al. Localized emission from laser-irradiated defects in 2D hexagonal boron nitride. 2D Mater. 5, 015010, http://dx.doi.org/10.1088/2053-1582/aa8e61 (2018).
[99] Lu, J. P. et al. Direct laser pruning of CdSxSe1-x nanobelts en route to a multicolored pattern with controlled functionalities. ACS Nano 6, 8298-8307 (2012). doi: 10.1021/nn303000j
[100] Lu, J. P. et al. Laser modified ZnO/CdSSe core-shell nanowire arrays for micro-steganography and improved photoconduction. Sci. Rep 4, 6350 (2014).
[101] Chua, S. T. et al. Selective micro laser annealing for fluorescence tuning of carbon-incorporated zinc oxide nanowire arrays. J. Mater. Chem. C 7, 6279-6288 (2019). doi: 10.1039/C9TC00175A
[102] Shimogaki, T. et al. Effect of laser annealing on optical properties of ion-implanted ZnO nanorods. J. Laser Micro Nanoeng 8, 75-78 (2013). doi: 10.2961/jlmn.2013.01.0015
[103] Chen, X. Y. et al. Mechanisms of photoluminescence from silicon nanocrystals formed by pulsed-laser deposition in argon and oxygen ambient. J. Appl. Phys 93, 6311-6319 (2003). doi: 10.1063/1.1569033
[104] Choi, Y. R. et al. Laser-induced greenish-blue photoluminescence of mesoporous silicon nanowires. Sci. Rep 4, 4940 (2014).
[105] Wang, S. C. et al. Selective 6H-SiC White Light Emission by Picosecond Laser Direct Writing. Sci. Rep 8, 257 (2018). doi: 10.1038/s41598-017-18685-0
[106] Zhang, C. et al. Plasmon-Driven Rapid In Situ Formation of Luminescence Single Crystal Nanoparticle. Small 15, 1901286 (2019). doi: 10.1002/smll.201901286
[107] Kong, T. et al. Fast transformation of a rare-earth doped luminescent sub-microcrystal via plasmonic nanoislands. J. Mater. Chem. C 8, 4338-4342 (2020). doi: 10.1039/D0TC00060D
[108] Gao, D. L. et al. Dynamic tailorable local luminescence patterns on single upconversion fluoride microcrystals via in situ oxidation through laser irradiation. J. Mater. Chem. C 7, 11879-11886 (2019). doi: 10.1039/C9TC04148F
[109] Gao, D. L. et al. Constructing lattice‐mismatched upconversion luminescence heterojunctions via light welding in seconds. Nano Sel 2, 398-405 (2021). doi: 10.1002/nano.202000098
[110] Min, Q. H. et al. Atomic-Level Passivation of Individual Upconversion Nanocrystal for Single Particle Microscopic Imaging. Adv. Funct. Mater 30, 1906137 (2020). doi: 10.1002/adfm.201906137
[111] Dong, Y. H. et al. Photon-Induced Reshaping in Perovskite Material Yields of Nanocrystals with Accurate Control of Size and Morphology. J. Phys. Chem. Lett 10, 4149-4156 (2019). doi: 10.1021/acs.jpclett.9b01673
[112] Zhao, W. W. et al. The Thinnest Light Disk: Rewritable Data Storage and Encryption on WS2 Monolayers. Adv. Funct. Mater 31, 2103140 (2021). doi: 10.1002/adfm.202103140
[113] Afaneh, T. et al. Laser-Assisted Chemical Modification of Monolayer Transition Metal Dichalcogenides. Adv. Funct. Mater 28, 1802949 (2018). doi: 10.1002/adfm.201802949
[114] Kim, E. et al. Site Selective Doping of Ultrathin Metal Dichalcogenides by Laser-Assisted Reaction. Adv. Mater 28, 341-346 (2016). doi: 10.1002/adma.201503945
[115] Bera, A., Muthu, D. V. S. & Sood, A. K. Enhanced Raman and photoluminescence response in monolayer MoS2 due to laser healing of defects. J. Raman Spectrosc 49, 100-105 (2018). doi: 10.1002/jrs.5196
[116] Tongay, S. et al. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett 13, 2831-2836 (2013). doi: 10.1021/nl4011172
[117] Mouri, S., Miyauchi, Y. & Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett 13, 5944-5948 (2013). doi: 10.1021/nl403036h
[118] Oh, H. M. et al. Photochemical Reaction in Monolayer MoS2 via Correlated Photoluminescence, Raman Spectroscopy, and Atomic Force Microscopy. ACS Nano 10, 5230-5236 (2016). doi: 10.1021/acsnano.6b00895
[119] Sivaram, S. V. et al. Spatially Selective Enhancement of Photoluminescence in MoS2 by Exciton-Mediated Adsorption and Defect Passivation. ACS Appl. Mater. Interfaces 11, 16147-16155 (2019). doi: 10.1021/acsami.9b00390
[120] Lee, Y. et al. Impeding Exciton-Exciton Annihilation in Monolayer WS2 by Laser Irradiation. ACS Photonics 5, 2904-2911 (2018). doi: 10.1021/acsphotonics.8b00249
[121] He, Z. Y. et al. Revealing Defect-State Photoluminescence in Monolayer WS2 by Cryogenic Laser Processing. ACS Nano 10, 5847-5855 (2016). doi: 10.1021/acsnano.6b00714
[122] Ardekani, H. et al. Reversible Photoluminescence Tuning by Defect Passivation via Laser Irradiation on Aged Monolayer MoS2. ACS Appl. Mater. Interfaces 11, 38240-38246 (2019). doi: 10.1021/acsami.9b10688
[123] Lee, Y. Y. et al. Progressive Micromodulation of Interlayer Coupling in Stacked WS2/WSe2 Heterobilayers Tailored by a Focused Laser Beam. ACS Appl. Mater. Interfaces 10, 37396-37406 (2018). doi: 10.1021/acsami.8b12631
[124] Mannebach, E. M. et al. Dynamic Optical Tuning of Interlayer Interactions in the Transition Metal Dichalcogenides. Nano Lett 17, 7761-7766 (2017). doi: 10.1021/acs.nanolett.7b03955
[125] Kang, Y. et al. Plasmonic Hot Electron Induced Structural Phase Transition in a MoS2 Monolayer. Adv. Mater 26, 6467-6471 (2014). doi: 10.1002/adma.201401802
[126] Cadiz, F. et al. Ultra-low power threshold for laser induced changes in optical properties of 2D molybdenum dichalcogenides. 2D Mater. 3, 045008, http://dx.doi.org/10.1088/2053-1583/3/4/045008 (2016).
[127] Currie, M. et al. Optical control of charged exciton states in tungsten disulfide. Appl. Phys. Lett. 106, 201907, http://dx.doi.org/10.1063/1.4921472 (2015).
[128] Yu, Y. L. et al. Fundamental limits of exciton-exciton annihilation for light emission in transition metal dichalcogenide monolayers. Phys. Rev. B 93, 201111(R) (2016). doi: 10.1103/PhysRevB.93.201111
[129] Bataller, A. W. et al. Dense Electron-Hole Plasma Formation and Ultralong Charge Lifetime in Monolayer MoS2 via Material Tuning. Nano Lett 19, 1104-1111 (2019). doi: 10.1021/acs.nanolett.8b04408
[130] Lim, X. et al. Multicolored carbon nanotubes: Decorating patterned carbon nanotube microstructures with quantum dots. ACS Nano 2, 1389-1395 (2008). doi: 10.1021/nn800101f
[131] Lim, S. X. et al. Templating nanotraffic light-dynamic tricoloured blinking silver nanoclusters on a graphene oxide film. J. Mater. Chem. C 6, 4641-4648 (2018). doi: 10.1039/C8TC00191J
[132] Zhang, Y. et al. Optical trapping and light-induced agglomeration of gold nanoparticle aggregates. Phys. Rev. B - Condens. Matter Mater. Phys 73, 165405 (2006). doi: 10.1103/PhysRevB.73.165405
[133] Haldar, A. et al. Self-assembly of microparticles in stable ring structures in an optical trap. Phys. Rev. A - At. Mol. Opt. Phys 85, 033832 (2012). doi: 10.1103/PhysRevA.85.033832
[134] Sato, S., Harada, Y. & Waseda, Y. Optical trapping of microscopic metal particles. Opt. Lett 64, 1807-1809 (1994).
[135] Wang, H. et al. Light-Driven Magnetic Encoding for Hybrid Magnetic Micromachines. Nano Lett. 21, 1628-1635 (2021). doi: 10.1021/acs.nanolett.0c04165
[136] Kwon, J. et al. Generation of highly luminescent micro rings by optical irradiation. Chem. Commun 53, 7642-7644 (2017). doi: 10.1039/C7CC01409K
[137] Poh, E. T., Liu, X. G. & Sow, C. H. Laser-Guided Microcanvas Printing of Multicolor Upconversion Nanoparticles on Molybdenum Disulfide Monolayer. Adv. Mater. Interfaces 6, 1901673 (2019). doi: 10.1002/admi.201901673