[1] |
Weber, W. H. & Lambe, J. Luminescent greenhouse collector for solar radiation. Appl. Opt. 15, 2299–2300 (1976). doi: 10.1364/AO.15.002299 |
[2] |
Meinardi, F. et al. Large-area luminescent solar concentrators based on 'Stokes-shift-engineered' nanocrystals in a mass-polymerized PMMA matrix. Nat. Photonics 8, 392–399 (2014). doi: 10.1038/nphoton.2014.54 |
[3] |
Meinardi, F. et al. Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots. Nat. Nanotechnol. 10, 878–885 (2015). doi: 10.1038/nnano.2015.178 |
[4] |
Meinardi, F. et al. Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots. Nat. Photonics 11, 177–185 (2017). doi: 10.1038/nphoton.2017.5 |
[5] |
Currie, M. J. et al. High-efficiency organic solar concentrators for photovoltaics. Science 321, 226–228 (2008). doi: 10.1126/science.1158342 |
[6] |
Wei, M. Y. et al. Ultrafast narrowband exciton routing within layered perovskite nanoplatelets enables low-loss luminescent solar concentrators. Nat. Energy 4, 197–205 (2019). doi: 10.1038/s41560-018-0313-y |
[7] |
Papakonstantinou, I. & Tummeltshammer, C. Fundamental limits of concentration in luminescent solar concentrators revised: the effect of reabsorption and nonunity quantum yield. Optica 2, 841–849 (2015). doi: 10.1364/OPTICA.2.000841 |
[8] |
Smestad, G. et al. The thermodynamic limits of light concentrators. Sol. Energy Mater. 21, 99–111 (1990). doi: 10.1016/0165-1633(90)90047-5 |
[9] |
Chazot, C. A. C. et al. Luminescent surfaces with tailored angular emission for compact dark-field imaging devices. Nat. Photonics 14, 310–315 (2020). doi: 10.1038/s41566-020-0593-1 |
[10] |
Zhao, F. et al. Scale-up of a luminescent solar concentrator-based photomicroreactor via numbering-up. ACS Sustain. Chem. Eng. 6, 422–429 (2018). doi: 10.1021/acssuschemeng.7b02687 |
[11] |
El-Bashir, S. M. et al. Red photoluminescent PMMA nanohybrid films for modifying the spectral distribution of solar radiation inside greenhouses. Renew. Energy 85, 928–938 (2016). doi: 10.1016/j.renene.2015.07.031 |
[12] |
Bimber, O. & Koppelhuber, A. Toward a flexible, scalable, and transparent thin-film camera. Proc. IEEE 105, 960–969 (2017). doi: 10.1109/JPROC.2016.2627535 |
[13] |
Bartu, P. et al. Conformable large-area position-sensitive photodetectors based on luminescence-collecting silicone waveguides. J. Appl. Phys. 107, 123101 (2010). doi: 10.1063/1.3431394 |
[14] |
Collins, S. , O'Brien, D. C. & Watt, A. High gain, wide field of view concentrator for optical communications. Opt. Lett. 39, 1756–1759 (2014). doi: 10.1364/OL.39.001756 |
[15] |
Shen, Y. F. et al. Nonimaging optical gain in luminescent concentration through photonic control of emission étendue. ACS Photonics 1, 746–753 (2014). doi: 10.1021/ph500196r |
[16] |
Manousiadis, P. P. et al. Wide field-of-view fluorescent antenna for visible light communications beyond the étendue limit. Optica 3, 702–706 (2016). doi: 10.1364/OPTICA.3.000702 |
[17] |
Peyronel, T. et al. Luminescent detector for free-space optical communication. Optica 3, 787–792 (2016). doi: 10.1364/OPTICA.3.000787 |
[18] |
Kang, C. H. et al. High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication. Light. Sci. Appl. 8, 94 (2019). doi: 10.1038/s41377-019-0204-4 |
[19] |
Dong, Y. R. et al. Nanopatterned luminescent concentrators for visible light communications. Opt. Express 25, 21926–21934 (2017). doi: 10.1364/OE.25.021926 |
[20] |
Galatus, R. et al. Extending battery life time in the wireless sensor applications with fluorescent optical fiber concentrator. Proceedings of 2018 IEEE International Instrumentation and Measurement Technology Conference, 1–6 (IEEE, Houston, TX, USA, 2018). |
[21] |
Bastos, A. et al. Flexible optical amplifier for visible-light communications based on organic–inorganic hybrids. ACS Omega 3, 13772–13781 (2018). doi: 10.1021/acsomega.8b01726 |
[22] |
Manousiadis, P. P. et al. Optical antennas for wavelength division multiplexing in visible light communications beyond the étendue limit. Adv. Optical Mater. 8, 1901139 (2020). doi: 10.1002/adom.201901139 |
[23] |
Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015). doi: 10.1021/nl5048779 |
[24] |
Savarese, M. et al. Fluorescence lifetimes and quantum yields of rhodamine derivatives: new insights from theory and experiment. J. Phys. Chem. A 116, 7491–7497 (2012). doi: 10.1021/jp3021485 |
[25] |
Tummeltshammer, C. et al. Losses in luminescent solar concentrators unveiled. Sol. Energy Mater. Sol. Cells 144, 40–47 (2016). doi: 10.1016/j.solmat.2015.08.008 |
[26] |
Portnoi, M. et al. Impact of curvature on the optimal configuration of flexible luminescent solar concentrators. Opt. Lett. 42, 2695–2698 (2017). doi: 10.1364/OL.42.002695 |
[27] |
Tummeltshammer, C. et al. On the ability of Förster resonance energy transfer to enhance luminescent solar concentrator efficiency. Nano Energy 32, 263–270 (2017). doi: 10.1016/j.nanoen.2016.11.058 |
[28] |
Tummeltshammer, C. et al. Homeotropic alignment and Förster resonance energy transfer: the way to a brighter luminescent solar concentrator. J. Appl. Phys. 116, 173103 (2014). doi: 10.1063/1.4900986 |
[29] |
Tummeltshammer, C. et al. Efficiency and loss mechanisms of plasmonic luminescent solar concentrators. Opt. Express 21, A735–A749 (2013). doi: 10.1364/OE.21.00A735 |
[30] |
Zhu, C. G. & Liu, Q. Review of Monte Carlo modeling of light transport in tissues. J. Biomed. Opt. 18, 050902 (2013). doi: 10.1117/1.JBO.18.5.050902 |
[31] |
Tan, J. J. et al. Simulation of MIMO channel characteristics for indoor visible light communication with LEDs. Optik 125, 44–49 (2014). doi: 10.1016/j.ijleo.2013.06.071 |
[32] |
Lakowicz, J. R. Principles of Fluorescence Spectroscopy (Springer, Boston, 2006). |
[33] |
DeGroot, M. H. & Schervish, M. J. Probability and Statistics 4th edn (Pearson Education, Upper Saddle River, NJ, 2013). |
[34] |
Brown, G. D. Bandwidth and rise time calculations for digital multimode fiber-optic data links. J. Lightwave Technol. 10, 672–678 (1992). doi: 10.1109/50.136103 |
[35] |
Moura, L. & Darwazeh, I. Introduction to Linear Circuit Analysis and Modelling (Elsevier, Amsterdam, 2005). |
[36] |
Shinar, R. & Shinar, J. Organic Electronics in Sensors and Biotechnology (McGraw-Hill, New York, 2009). |
[37] |
Klimov, V. I. et al. Quality factor of luminescent solar concentrators and practical concentration limits attainable with semiconductor quantum dots. ACS Photonics 3, 1138–1148 (2016). doi: 10.1021/acsphotonics.6b00307 |
[38] |
Sychugov, I. Analytical description of a luminescent solar concentrator. Optica 6, 1046–1049 (2019). doi: 10.1364/OPTICA.6.001046 |
[39] |
Personick, S. D. Receiver design for digital fiber optic communication systems. I. Bell Syst. Tech. J. 52, 843–874 (1973). |
[40] |
Kisel, A. V. An extension of pulse shaping filter theory. IEEE Trans. Commun. 47, 645–647 (1999). doi: 10.1109/26.768751 |
[41] |
Ambroz, F. et al. Room temperature synthesis of phosphine‐capped lead bromide perovskite nanocrystals without coordinating solvents. Part. Part. Syst. Charact. 37, 1900391 (2020). doi: 10.1002/ppsc.201900391 |
[42] |
Zhao, H. G. et al. Perovskite quantum dots integrated in large-area luminescent solar concentrators. Nano Energy 37, 214–223 (2017). doi: 10.1016/j.nanoen.2017.05.030 |
[43] |
Zhao, H. G. et al. Absorption enhancement in "giant" core/alloyed-shell quantum dots for luminescent solar concentrator. Small 12, 5354–5365 (2016). doi: 10.1002/smll.201600945 |
[44] |
Haigh, P. A. et al. A 20-Mb/s VLC link with a polymer LED and a multilayer perceptron equalizer. IEEE Photonics Technol. Lett. 26, 1975–1978 (2014). doi: 10.1109/LPT.2014.2343692 |
[45] |
Bian, R. , Tavakkolnia, I. & Haas, H. 15.73 Gb/s visible light communication with off-the-shelf LEDs. J. Lightwave Technol. 37, 2418–2424 (2019). doi: 10.1109/JLT.2019.2906464 |
[46] |
Street, A. M. et al. Closed form expressions for baseline wander effects in wireless IR applications. Electron. Lett. 33, 1060–1062 (1997). doi: 10.1049/el:19970739 |