[1] Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492-1505 (1958). doi: 10.1103/PhysRev.109.1492
[2] Islam, R. et al. Measuring entanglement entropy in a quantum many-body system. Nature 528, 77-83 (2015). doi: 10.1038/nature15750
[3] Kaufman, A. M. et al. Quantum thermalization through entanglement in an isolated many-body system. Science 353, 794-800 (2016). doi: 10.1126/science.aaf6725
[4] Simon, B. Holonomy, the quantum adiabatic theorem, and berry's phase. Phys. Rev. Lett. 51, 2167-2170 (1989).
[5] Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. A Math. Phys. Eng. Sci. 392, 45-57 (1984).
[6] Xu, J. S. et al. Simulating the exchange of Majorana zero modes with a photonic system. Nat. Commun. 7, 13194 (2016). doi: 10.1038/ncomms13194
[7] Eisert, J., Friesdorf, M. & Gogolin, C. Quantum many-body systems out of equilibrium. Nat. Phys. 11, 124-130 (2015). doi: 10.1038/nphys3215
[8] Aharonov, Y., Davidovich, L. & Zagury, N. Quantum random walks. Phys. Rev. A 48, 1687-1690 (1993). doi: 10.1103/PhysRevA.48.1687
[9] Childs, A. M. Universal computation by quantum walk. Phys. Rev. Lett. 102, 180501 (2009). doi: 10.1103/PhysRevLett.102.180501
[10] Childs, A. M., Gosset, D. & Webb, Z. Universal computation by multiparticle quantum walk. Science 339, 791-794 (2013). doi: 10.1126/science.1229957
[11] Long, G. L. Grover algorithm with zero theoretical failure rate. Phys. Rev. A 64, 022307 (2001). doi: 10.1103/PhysRevA.64.022307
[12] Schreiber, A. et al. A 2D quantum walk simulation of two-particle dynamics. Science 336, 55-58 (2012). doi: 10.1126/science.1218448
[13] Sansoni, L. et al. Two-particle bosonic-fermionic quantum walk via integrated photonics. Phys. Rev. Lett. 108, 010502 (2012). doi: 10.1103/PhysRevLett.108.010502
[14] Poulios, K. et al. Quantum walks of correlated photon pairs in two-dimensional waveguide arrays. Phys. Rev. Lett. 112, 143604 (2014). doi: 10.1103/PhysRevLett.112.143604
[15] Preiss, P. M. et al. Strongly correlated quantum walks in optical lattices. Science 347, 1229-1233 (2015). doi: 10.1126/science.1260364
[16] Chen, Z. H., Zhou, Y. & Shen, J. T. Photon antibunching and bunching in a ring-resonator waveguide quantum electrodynamics system. Opt. Lett. 41, 3313-3316 (2016). doi: 10.1364/OL.41.003313
[17] Chen, Z. H., Zhou, Y. & Shen, J. T. Exact dissipation model for arbitrary photonic Fock state transport in waveguide QED systems. Opt. Lett. 42, 887-890 (2017). doi: 10.1364/OL.42.000887
[18] Chen, Z. H., Zhou, Y. & Shen, J. T. Entanglement-preserving approach for reservoir-induced photonic dissipation in waveguide QED systems. Phys. Rev. A 98, 053830 (2018). doi: 10.1103/PhysRevA.98.053830
[19] Zhou, Y. et al. Efficient two-photon excitation by photonic dimers. Opt. Lett. 44, 475-478 (2019). doi: 10.1364/OL.44.000475
[20] Schreiber, A. et al. Decoherence and disorder in quantum walks: from ballistic spread to localization. Phys. Rev. Lett. 106, 180403 (2011). doi: 10.1103/PhysRevLett.106.180403
[21] Crespi, A. et al. Anderson localization of entangled photons in an integrated quantum walk. Nat. Photonics 7, 322-328 (2013). doi: 10.1038/nphoton.2013.26
[22] Kitagawa, T. et al. Exploring topological phases with quantum walks. Phys. Rev. A 82, 033429 (2010). doi: 10.1103/PhysRevA.82.033429
[23] Kitagawa, T. Topological phenomena in quantum walks: elementary introduction to the physics of topological phases. Quantum Inf. Process. 11, 1107-1148 (2012). doi: 10.1007/s11128-012-0425-4
[24] Kitagawa, T. et al. Observation of topologically protected bound states in photonic quantum walks. Nat. Commun. 3, 882 (2012). doi: 10.1038/ncomms1872
[25] Obuse, H. & Kawakami, N. Topological phases and delocalization of quantum walks in random environments. Phys. Rev. B 84, 195139 (2011). doi: 10.1103/PhysRevB.84.195139
[26] Obuse, H. et al. Unveiling hidden topological phases of a one-dimensional Hadamard quantum walk. Phys. Rev. B 92, 045424 (2015). doi: 10.1103/PhysRevB.92.045424
[27] Asbóth, J. K. Symmetries, topological phases, and bound states in the one-dimensional quantum walk. Phys. Rev. B 86, 195414 (2012). doi: 10.1103/PhysRevB.86.195414
[28] Asbóth, J. K. & Obuse, H. Bulk-boundary correspondence for chiral symmetric quantum walks. Phys. Rev. B 88, 121406 (2013). doi: 10.1103/PhysRevB.88.121406
[29] Asbóth, J. K., Tarasinski, B. & Delplace, P. Chiral symmetry and bulk-boundary correspondence in periodically driven one-dimensional systems. Phys. Rev. B 90, 125143 (2014). doi: 10.1103/PhysRevB.90.125143
[30] Rakovszky, T. & Asbóth, J. K. Localization, delocalization, and topological phase transitions in the one-dimensional split-step quantum walk. Phys. Rev. A 92, 052311 (2015). doi: 10.1103/PhysRevA.92.052311
[31] Cedzich, C. et al. Bulk-edge correspondence of one-dimensional quantum walks. J. Phys. A Math. Theor. 49, 21LT01 (2016).
[32] Cardano, F. et al. Statistical moments of quantum-walk dynamics reveal topological quantum transitions. Nat. Commun. 7, 11439 (2016). doi: 10.1038/ncomms11439
[33] Cardano, F. et al. Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons. Nat. Commun. 8, 15516 (2017). doi: 10.1038/ncomms15516
[34] Xiao, L. et al. Observation of topological edge states in parity-time-symmetric quantum walks. Nat. Phys. 13, 1117-1123 (2017). doi: 10.1038/nphys4204
[35] Zhan, X. et al. Detecting topological invariants in nonunitary discrete-time quantum walks. Phys. Rev. Lett. 119, 130501 (2017). doi: 10.1103/PhysRevLett.119.130501
[36] Ramasesh, V. V. et al. Direct probe of topological invariants using bloch oscillating quantum walks. Phys. Rev. Lett. 118, 130501 (2017). doi: 10.1103/PhysRevLett.118.130501
[37] Flurin, E. et al. Observing topological invariants using quantum walks in superconducting circuits. Phys. Rev. X 7, 031023 (2017).
[38] Xu, X. Y. et al. Measuring the winding number in a large-scale chiral quantum walk. Phys. Rev. Lett. 120, 260501 (2018). doi: 10.1103/PhysRevLett.120.260501
[39] Zeuner, J. M. et al. Observation of a topological transition in the bulk of a non-hermitian system. Phys. Rev. Lett. 115, 040402 (2015). doi: 10.1103/PhysRevLett.115.040402
[40] Wang, Y. et al. Direct observation of topology from single-photon dynamics. Phys. Rev. Lett. 122, 193903 (2019). doi: 10.1103/PhysRevLett.122.193903
[41] Pancharatnam, S. Generalized theory of interference, and its applications. Proc. Indian Acad. Sci. A 44, 247-262 (1956). doi: 10.1007/BF03046050
[42] Samuel, J. & Bhandari, R. General setting for berry's phase. Phys. Rev. Lett. 60, 2339-2342 (1988). doi: 10.1103/PhysRevLett.60.2339
[43] Wang, Q. Q. et al. Dynamic-disorder-induced enhancement of entanglement in photonic quantum walks. Optica 5, 1136-1140 (2018). doi: 10.1364/OPTICA.5.001136
[44] Manouchehri, K. & Wang, J. B. Physical Implementation of Quantum Walks (Springer, Berlin, 2014).
[45] Su, W. P. et al. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698-1701 (1979).
[46] Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045-3067 (2010). doi: 10.1103/RevModPhys.82.3045
[47] Budich, J. C. & Heyl, M. Dynamical topological order parameters far from equilibrium. Phys. Rev. B 93, 085416 (2016). doi: 10.1103/PhysRevB.93.085416
[48] Heyl, M., Polkovnikov, A. & Kehrein, S. Dynamical quantum phase transitions in the transverse-Field Ising model. Phys. Rev. Lett. 110, 135704 (2013). doi: 10.1103/PhysRevLett.110.135704
[49] Heyl, M. Dynamical quantum phase transitions: a review. Rep. Prog. Phys. 81, 054001 (2018). doi: 10.1088/1361-6633/aaaf9a
[50] Jurcevic, P. et al. Direct observation of dynamical quantum phase transitions in an interacting many-body system. Phys. Rev. Lett. 119, 080501 (2017). doi: 10.1103/PhysRevLett.119.080501
[51] Zhang, J. et al. Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator. Nature 551, 601-604 (2017). doi: 10.1038/nature24654
[52] Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579-584 (2017). doi: 10.1038/nature24622
[53] Fläschner, N. et al. Observation of dynamical vortices after quenches in a system with topology. Nat. Phys. 14, 265-268 (2018). doi: 10.1038/s41567-017-0013-8
[54] Guo, X. Y. et al. Observation of a dynamical quantum phase transition by a superconducting qubit simulation. Phys. Rev. Appl. 11, 044080 (2019). doi: 10.1103/PhysRevApplied.11.044080
[55] Wang, K. K. et al. Simulating dynamic quantum phase transitions in photonic quantum walks. Phys. Rev. Lett. 122, 020501 (2019). doi: 10.1103/PhysRevLett.122.020501
[56] Smale, S. et al. Observation of a transition between dynamical phases in a quantum degenerate Fermi gas. Sci. Adv. 5, eaat1568 (2019). doi: 10.1126/sciadv.aax1568
[57] Tian, T. et al. Observation of dynamical phase transitions in a topological nanomechanical system. Phys. Rev. B 100, 024310 (2019). doi: 10.1103/PhysRevB.100.024310
[58] Vajna, S. & Dóra, B. Topological classification of dynamical phase transitions. Phys. Rev. B 91, 155127 (2015). doi: 10.1103/PhysRevB.91.155127
[59] Mendl, C. B. & Budich, J. C. Stability of dynamical quantum phase transitions in quenched topological insulators: from multi-band to disordered systems. Phys. Rev. B 100, 224307 (2019). doi: 10.1103/PhysRevB.100.224307
[60] Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2-30 (2003).
[61] Suzuki, S., Inoue, J. I. & Chakrabarti, B. K. Quantum Ising Phases and Transitions in Transverse Ising Models. 2nd edn (Springer, Berlin, 2013).
[62] Tang, H. et al. Experimental two-dimensional quantum walk on a photonic chip. Sci. Adv. 4, eaat3174 (2018). doi: 10.1126/sciadv.aat3174
[63] Kwiat, P. G. & Chiao, R. Y. Observation of a nonclassical Berry's phase for the photon. Phys. Rev. Lett. 66, 588-591 (1991). doi: 10.1103/PhysRevLett.66.588