[1] Furdek, M. & Skorin-Kapov, N. Physical-layer attacks in all-optical WDM networks. In 2011 Proceedings of the 34th International Convention MIPRO (2011).
[2] Hui, R. Q. & O'Sullivan, M. Optical system performance measurements. In Fiber Optic Measurement Techniques (eds Hui, R. Q. & O'Sullivan, M.) 481–630 (Academic Press, Boston, 2009).
[3] Chan, C. C. K. Optical Performance Monitoring: Advanced Techniques for Next-Generation Photonic Networks. (Academic Press, Burlington, 2010).
[4] Shim, H. K et al.Demonstration of correlation-based OTDR for in-service monitoring of 64-split TDM PON Proceedings of OFC/NFOEC. (IEEE: Los Angeles, CA, USA, 2012)..
[5] Mata, J. et al. Artificial intelligence (AI) methods in optical networks: a comprehensive survey. Opt. Switching Netw. 28, 43–57 (2018). doi: 10.1016/j.osn.2017.12.006
[6] Skorin-Kapov, N. et al. Physical-layer security in evolving optical networks. IEEE Commun. Mag. 54, 110–117 (2016).
[7] Iqbal, M. Z., Fathallah, H. & Belhadj, N. Optical fiber tapping: methods and precautions. Proceedings of the 8th International Conference on High-capacity Optical Networks and Emerging Technologies. (IEEE, Riyadh, Saudi Arabia, 2011).
[8] Fok, M. P. et al. Optical layer security in fiber-optic networks. IEEE Trans. Inf. Forensics Security 6, 725–736 (2011). doi: 10.1109/TIFS.2011.2141990
[9] Medard, M., Chinn, S. R. & Saengudomlert, P. Attack detection in all-optical networks. In Proceedings of OFC 1998, OSA Technical Digest Series Vol.2. (IEEE, San Jose, CA, USA, 1998).
[10] Skorin-Kapov, N., Chen, J. J. & Wosinska, L. A new approach to optical networks security: attack-aware routing and wavelength assignment. IEEE/ACM Trans. Netw. 18, 750–760 (2010). doi: 10.1109/TNET.2009.2031555
[11] Shaneman, K. & Gray, S. Optical network security: technical analysis of fiber tapping mechanisms and methods for detection & prevention. Proceedings of IEEE MILCOM, 2004. (IEEE, Monterey, CA, USA, 2004).
[12] Eraerds, P. et al. Photon counting OTDR: advantages and limitations. J. Lightwave Technol. 28, 952–964 (2010). doi: 10.1109/JLT.2009.2039635
[13] Bennett, C. H. & Brassard, G. Quantum public key distribution reinvented. ACM SIGACT N. 18, 51–53 (1987). doi: 10.1145/36068.36070
[14] Pirandola, S. et al. Advances in quantum cryptography. Adv. Opt. Photonics https://doi.org/10.1364/AOP.361502 (2020).
[15] Qi, R. Y. et al. Implementation and security analysis of practical quantum secure direct communication. Light Sci. Appl. 8, 22 (2019). doi: 10.1038/s41377-019-0132-3
[16] Long, G. L. & Liu, X. S. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A65, 032302 (2002).
[17] Deng, F. G., Long, G. L. & Liu, X. S. Two-step quantum direct communication protocol using the einstein-podolsky-rosen pair block. Phys. Rev. A68, 042317 (2003).
[18] Humble, T. S. Quantum security for the physical layer. IEEE Commun. Mag. 51, 56–62 (2013).
[19] Gisin, N. et al. Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A73, 022320 (2006). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT04000006000003000012000001&idtype=cvips&gifs=Yes
[20] Lodewyck, J. et al. Experimental implementation of non-gaussian attacks on a continuous-variable quantum key distribution system. Proceedings of 2007 Quantum Electronics and Laser Science Conference. (IEEE, Baltimore, MD, USA, 2007).
[21] Wootters, W. K. & Zurek, W. H. A single quantum cannot be cloned. Nature 299, 802–803 (1982). doi: 10.1038/299802a0
[22] Hu, J. Y. et al. Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5, e16144 (2016). doi: 10.1038/lsa.2016.144
[23] Wu, J. W. et al. Security of quantum secure direct communication based on wyner's wiretap channel theory. Quantum Eng. 1, e26 (2019). doi: 10.1002/que2.26
[24] Sasaki, M. et al. Quantum photonic network: concept, basic tools, and future issues. IEEE J. Sel. Top. Quantum Electron. 21, 6400313 (2015). http://ieeexplore.ieee.org/document/6954419
[25] Lum, D. J. et al. Quantum enigma machine: Experimentally demonstrating quantum data locking. Phys. Rev. A94, 022315 (2016). doi: 10.1103/PhysRevA.94.022315
[26] Pirandola, S. et al. Confidential direct communications: a quantum approach using continuous variables. IEEE J. Sel. Top. Quantum Electron. 15, 1570–1580 (2009). doi: 10.1109/JSTQE.2009.2021147
[27] Adesso, G., Ragy, S. & Lee, A. R. Continuous variable quantum information: gaussian states and beyond. Open Syst. Inf. Dyn. 21, 1440001 (2014). doi: 10.1142/S1230161214400010
[28] Shapiro, J. H. et al. Quantum low probability of intercept. 2019 Conference on Lasers and Electro-Optics (CLEO) 1–2 (San Jose, CA, USA, 2019), https://doi.org/10.1364/CLEO_QELS.2019.FTh4A.2.
[29] Lindsey, W. C. Transmission of classical information over noisy quantum channels–a spectrum approach. IEEE J. Sel. Areas Commun. 38, 427–438 (2020). doi: 10.1109/JSAC.2020.2969003
[30] Grosshans, F. & Grangier, P. Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88, 057902 (2002). doi: 10.1103/PhysRevLett.88.057902
[31] Qi, B. Simultaneous classical communication and quantum key distribution using continuous variables. Phys. Rev. A94, 042340 (2016).
[32] Kumar, R. et al. Experimental demonstration of single-shot quantum and classical signal transmission on single wavelength optical pulse. Sci. Rep. 9, 11190 (2019). doi: 10.1038/s41598-019-47699-z
[33] Qi, B. et al. Generating the local oscillator "locally" in continuous-variable quantum key distribution based on coherent detection. Phys. Rev. X5, 041009 (2015). http://arxiv.org/abs/1503.00662v3
[34] Leverrier, A. et al. Multidimensional reconciliation for a continuous-variable quantum key distribution. Phys. Rev. A77, 042325 (2008).
[35] Jouguet, P. et al. Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photonics 7, 378–381 (2013). doi: 10.1038/nphoton.2013.63
[36] Ghorai, S. et al. Asymptotic security of continuous-variable quantum key distribution with a discrete modulation. Phys. Rev. X9, 021059 (2019).
[37] Cerf, N. J., Lévy, M. & van Assche, G. Quantum distribution of Gaussian keys using squeezed states. Phys. Rev. A63, 052311 (2001).
[38] Paris, M. G. A. Displacement operator by beam splitter. Phys. Lett. A217, 78–80 (1996).
[39] Leverrier, A., Grosshans, F. & Grangier, P. Finite-size analysis of a continuous-variable quantum key distribution. Phys. Rev. A81, 062343 (2010).
[40] Fossier, S. et al. Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers. J. Phys. B: At., Mol. Optical Phys. 42, 114014 (2009). doi: 10.1088/0953-4075/42/11/114014
[41] Zavatta, A., Fiurášek, J. & Bellini, M. A high-fidelity noiseless amplifier for quantum light states. Nat. Photonics 5, 52–56 (2011). doi: 10.1038/nphoton.2010.260
[42] Fasel, S. et al. Quantum cloning with an optical fiber amplifier. Phys. Rev. Lett. 89, 107901 (2002). doi: 10.1103/PhysRevLett.89.107901
[43] Caves, C. M. Quantum limits on noise in linear amplifiers. Phys. Rev. D26, 1817–1839 (1982).
[44] Tong, Z. et al. Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers. Nat. Photonics 5, 430–436 (2011). doi: 10.1038/nphoton.2011.79
[45] Ou, Z. Y., Pereira, S. F. & Kimble, H. J.Quantum noise reduction in optical amplification. Phys. Rev. Lett. 70, 3239–3242 (1993). doi: 10.1103/PhysRevLett.70.3239
[46] Leverrier, A. & Grangier, P. Continuous-variable quantum-key-distribution protocols with a non-Gaussian modulation. Phys. Rev. A83, 042312 (2011).
[47] Zhao, Y. B. et al. Asymptotic security of binary modulated continuous-variable quantum key distribution under collective attacks. Phys. Rev. A79, 012307 (2009).
[48] Aminikhanghahi, S. & Cook, D. J. A survey of methods for time series change point detection. Knowl. Inf. Syst. 51, 339–367 (2017). doi: 10.1007/s10115-016-0987-z
[49] Adams, R. P. & MacKay, D. J. C. Bayesian online changepoint detection. Preprint at https://arxiv.org/abs/0710.3742 (2007).
[50] Li, F., Runger, G. C. & Tuv, E. Supervised learning for change-point detection. Int. J. Prod. Res. 44, 2853–2868 (2006). doi: 10.1080/00207540600669846
[51] Severo, M. & Gama, J. Change detection with kalman filter and cusum. In Ubiquitous Knowledge Discovery: Challenges, Techniques, Applications (eds May, A. & Saitta, L.) (Springer, Berlin, Heidelberg, 2006).
[52] Huang, D. et al. Long-distance continuous-variable quantum key distribution by controlling excess noise. Sci. Rep. 6, 19201 (2016). doi: 10.1038/srep19201
[53] Diamanti, E. et al. Practical challenges in quantum key distribution. npj Quantum Inf. 2, 16025 (2016). doi: 10.1038/npjqi.2016.25