[1] Stranks, S. D. et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013). doi: 10.1126/science.1243982
[2] Xing, G. C. et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342, 344–347 (2013). doi: 10.1126/science.1243167
[3] Sung, J. et al. Long-range ballistic propagation of carriers in methylammonium lead iodide perovskite thin films. Nat. Phys. 16, 171–176 (2020). doi: 10.1038/s41567-019-0730-2
[4] Guo, Z. et al. Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy. Science 356, 59–62 (2017). doi: 10.1126/science.aam7744
[5] Deng, S. B. et al. Long-range exciton transport and slow annihilation in two-dimensional hybrid perovskites. Nat. Commun. 11, 664 (2020). doi: 10.1038/s41467-020-14403-z
[6] Giovanni, D. et al. Ultrafast long-range spin-funneling in solution-processed Ruddlesden–Popper halide perovskites. Nat. Commun. 10, 3456 (2019). doi: 10.1038/s41467-019-11251-4
[7] Li, M. J. et al. Low threshold and efficient multiple exciton generation in halide perovskite nanocrystals. Nat. Commun. 9, 4197 (2018). doi: 10.1038/s41467-018-06596-1
[8] de Weerd, C. et al. Efficient carrier multiplication in CsPbI3 perovskite nanocrystals. Nat. Commun. 9, 4199 (2018). doi: 10.1038/s41467-018-06721-0
[9] Chen, J. S. et al. Cation-dependent hot carrier cooling in halide perovskite nanocrystals. J. Am. Chem. Soc. 141, 3532–3540 (2019). doi: 10.1021/jacs.8b11867
[10] Li, M. J. et al. Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals. Nat. Commun. 8, 14350 (2017). doi: 10.1038/ncomms14350
[11] Kagan, C. R. , Murray, C. B. & Bawendi, M. G. Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids. Phys. Rev. B 54, 8633–8643 (1996). doi: 10.1103/PhysRevB.54.8633
[12] Kagan, C. R. et al. Electronic energy transfer in CdSe quantum dot solids. Phys. Rev. Lett. 76, 1517–1520 (1996). doi: 10.1103/PhysRevLett.76.1517
[13] Akselrod, G. M. et al. Subdiffusive exciton transport in quantum dot solids. Nano Lett. 14, 3556–3562 (2014). doi: 10.1021/nl501190s
[14] Kang, J. & Wang, L. W. High defect tolerance in lead Halide perovskite CsPbBr3. J. Phys. Chem. Lett. 8, 489–493 (2017). doi: 10.1021/acs.jpclett.6b02800
[15] Akkerman, Q. A. et al. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 17, 394–405 (2018). doi: 10.1038/s41563-018-0018-4
[16] Huang, H. et al. Lead halide perovskite nanocrystals in the research spotlight: stability and defect tolerance. ACS Energy Lett. 2, 2071–2083 (2017). doi: 10.1021/acsenergylett.7b00547
[17] Kim, Y. H. et al. Highly efficient light-emitting diodes of colloidal metal–halide perovskite nanocrystals beyond quantum size. ACS Nano 11, 6586–6593 (2017). doi: 10.1021/acsnano.6b07617
[18] Veldhuis, S. A. et al. Benzyl alcohol-treated CH3NH3PbBr3 nanocrystals exhibiting high luminescence, stability, and ultralow amplified spontaneous emission thresholds. Nano Letters 17, 7424–7432 (2017). doi: 10.1021/acs.nanolett.7b03272
[19] Huang, H. et al. Growth mechanism of strongly emitting CH3NH3PbBr3 perovskite nanocrystals with a tunable bandgap. Nat. Commun. 8, 996 (2017). doi: 10.1038/s41467-017-00929-2
[20] Tanaka, K. et al. Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3. Solid State Commun. 127, 619–623 (2003). doi: 10.1016/S0038-1098(03)00566-0
[21] Wang, Q. et al. Quantum confinement effect and exciton binding energy of layered perovskite nanoplatelets. AIP Adv. 8, 025108 (2018). doi: 10.1063/1.5020836
[22] Zhang, Z. Y. et al. The role of trap-assisted recombination in luminescent properties of organometal halide CH3NH3PbBr3 perovskite films and quantum dots. Sci. Rep. 6, 27286 (2016). doi: 10.1038/srep27286
[23] Lee, E. M. Y. & Tisdale, W. A. Determination of exciton diffusion length by transient photoluminescence quenching and its application to quantum dot films. J. Phys. Chem. C 119, 9005–9015 (2015). doi: 10.1021/jp512634c
[24] Herz, L. M. Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits. ACS Energy Lett. 2, 1539–1548 (2017). doi: 10.1021/acsenergylett.7b00276
[25] Pazos-Outón, L. M. et al. Photon recycling in lead iodide perovskite solar cells. Science 351, 1430–1433 (2016). doi: 10.1126/science.aaf1168
[26] Brenes, R. et al. Benefit from photon recycling at the maximum-power point of state-of-the-art perovskite solar cells. Phys. Rev. Appl. 12, 014017 (2019). doi: 10.1103/PhysRevApplied.12.014017
[27] Motti, S. G. et al. Heterogeneous photon recycling and charge diffusion enhance charge transport in quasi-2D lead-halide perovskite films. Nano Lett. 19, 3953–3960 (2019). doi: 10.1021/acs.nanolett.9b01242
[28] Gan, Z. X. et al. The dominant energy transport pathway in halide perovskites: photon recycling or carrier diffusion? Adv. Energy Mater. 9, 1900185 (2019). doi: 10.1002/aenm.201900185
[29] Wang, Y. P. et al. Photon transport in one-dimensional incommensurately epitaxial CsPbX3 arrays. Nano Lett. 16, 7974–7981 (2016). doi: 10.1021/acs.nanolett.6b04297
[30] Dursun, I. et al. Efficient photon recycling and radiation trapping in cesium lead halide perovskite waveguides. ACS Energy Lett. 3, 1492–1498 (2018). doi: 10.1021/acsenergylett.8b00758
[31] Bowman, A. R. et al. Quantifying photon recycling in solar cells and light-emitting diodes: absorption and emission are always key. Phys. Rev. Lett. 125, 067401 (2020). doi: 10.1103/PhysRevLett.125.067401
[32] Cho, C. et al. The role of photon recycling in perovskite light-emitting diodes. Nat. Commun. 11, 611 (2020). doi: 10.1038/s41467-020-14401-1
[33] Turro, N. J. Energy transfer processes. in Photochemical Processes in Polymer Chemistry–2 (ed Smets, G. ) (Pergamon, 1977), 405–429.
[34] Andrews, D. L. , Curutchet, C. & Scholes, G. D. Resonance energy transfer: beyond the limits. Laser Photonics Rev. 5, 114–123 (2011). doi: 10.1002/lpor.201000004
[35] Olaya-Castro, A. & Scholes, G. D. Energy transfer from Förster–Dexter theory to quantum coherent light-harvesting. Int. Rev. Phys. Chem. 30, 49–77 (2011). doi: 10.1080/0144235X.2010.537060
[36] Righetto, M. et al. Engineering interactions in QDs–PCBM blends: a surface chemistry approach. Nanoscale 10, 11913–11922 (2018). doi: 10.1039/C8NR03520B
[37] Stewart, M. H. et al. Competition between Förster resonance energy transfer and electron transfer in stoichiometrically assembled semiconductor quantum dot–fullerene conjugates. ACS Nano 7, 9489–9505 (2013). doi: 10.1021/nn403872x
[38] Mikhnenko, O. V. , Blom, P. W. M. & Nguyen, T. Q. Exciton diffusion in organic semiconductors. Energy Environ. Sci. 8, 1867–1888 (2015). doi: 10.1039/C5EE00925A
[39] Jolene Mork, A. , Weidman, M. C. , Prins, F. & Tisdale, W. A. Magnitude of the Förster Radius in Colloidal Quantum Dot Solids. J. Phys. Chem. C 118, 13920–13928 (2014). doi: 10.1021/jp502123n
[40] Unuchek, D. et al. Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature 560, 340–344 (2018). doi: 10.1038/s41586-018-0357-y
[41] High, A. A. et al. Exciton optoelectronic transistor. Opt. Lett. 32, 2466–2468 (2007). doi: 10.1364/OL.32.002466
[42] Kuznetsova, Y. Y. et al. All-optical excitonic transistor. Opt. Lett. 35, 1587–1589 (2010). doi: 10.1364/OL.35.001587
[43] Brédas, J. L. , Sargent, E. H. & Scholes, G. D. Photovoltaic concepts inspired by coherence effects in photosynthetic systems. Nat. Mater. 16, 35–44 (2017). doi: 10.1038/nmat4767