[1] Tonouchi, M. Cutting-edge terahertz technology. Nat. Photonics 1, 97-105 (2007). doi: 10.1038/nphoton.2007.3
[2] Jepsen, P. U., Cooke, D. G. & Koch, M. Terahertz spectroscopy and imaging-Modern techniques and applications. Laser Photon Rev. 5, 124-166 (2011). doi: 10.1002/lpor.201000011
[3] Masson, J. B. & Gallot, G. Terahertz achromatic quarter-wave plate. Opt. Lett. 31, 265-267 (2006). doi: 10.1364/OL.31.000265
[4] Scherger, B., Jördens, C. & Koch, M. Variable-focus terahertz lens. Opt. Expr. 19, 4528-4535 (2011). doi: 10.1364/OE.19.004528
[5] Wu, Z. et al. Vector characterization of zero-order terahertz Bessel beams with linear and circular polarizations. Sci. Rep. 7, 13929 (2017). doi: 10.1038/s41598-017-12524-y
[6] Ferguson, B. & Zhang, X. C. Materials for terahertz science and technology. Nat. Mater. 1, 26-33 (2002). doi: 10.1038/nmat708
[7] Yu, N. F. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139-150 (2014). doi: 10.1038/nmat3839
[8] Hsiao, H. H., Chu, C. H. & Tsai, D. P. Fundamentals and applications of metasurfaces. Small Methods 1, 1600064 (2017). doi: 10.1002/smtd.201600064
[9] Ding, F., Pors, A. & Bozhevolnyi, S. I. Gradient metasurfaces: a review of fundamentals and applications. Rep. Prog. Phys. 81, 026401 (2018). doi: 10.1088/1361-6633/aa8732
[10] He, Q., Sun, S. L., Xiao, S. Y. & Zhou, L. High-efficiency metasurfaces: principles, realizations, and applications. Adv. Opt. Mater. 6, 1800415 (2018). doi: 10.1002/adom.201800415
[11] Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333-337 (2011). doi: 10.1126/science.1210713
[12] Ni, X., Emani, N. K., Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Broadband light bending with plasmonic nanoantennas. Science 335, 427 (2012). doi: 10.1126/science.1214686
[13] Sun, S. L. et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano. Lett. 12, 6223-6229 (2012). doi: 10.1021/nl3032668
[14] Grady, N. K. et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 340, 1304-1307 (2013). doi: 10.1126/science.1235399
[15] Sun, S. L. et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater. 11, 426-431 (2012). doi: 10.1038/nmat3292
[16] Sun, W. J., He, Q., Sun, S. L. & Zhou, L. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations. Light Sci. Appl. 5, e16003 (2016). doi: 10.1038/lsa.2016.3
[17] Pors, A., Nielsen, M. G., Bernardin, T., Weeber, J. C. & Bozhevolnyi, S. I. Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons. Light Sci. Appl. 3, e197 (2014). doi: 10.1038/lsa.2014.78
[18] Zheng, G. X. et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10, 308-312 (2015). doi: 10.1038/nnano.2015.2
[19] Chen, W. T. et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano. Lett. 14, 225-230 (2014). doi: 10.1021/nl403811d
[20] Aieta, F. et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano. Lett. 12, 4932-4936 (2012). doi: 10.1021/nl302516v
[21] Li, X. et al. Flat metasurfaces to focus electromagnetic waves in reflection geometry. Opt. Lett. 37, 4940-4942 (2012). doi: 10.1364/OL.37.004940
[22] Hu, D. et al. Ultrathin terahertz planar elements. Adv. Opt. Mater. 1, 186-191 (2013). doi: 10.1002/adom.201200044
[23] Yu, N. F. et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano. Lett. 12, 6328-6333 (2012).
[24] Chen, X. Z. et al. Reversible three-dimensional focusing of visible light with ultrathin plasmonic flat lens. Adv. Opt. Mater. 1, 517-521 (2013). doi: 10.1002/adom.201300102
[25] Cong, L. Q. et al. Manipulating polarization states of terahertz radiation using metamaterials. New J. Phys. 14, 115013 (2012). doi: 10.1088/1367-2630/14/11/115013
[26] Bomzon, Z., Biener, G., Kleiner, V. & Hasman, E. Space-variant pancharatnam-berry phase optical elements with computer-generated subwavelength gratings. Opt. Lett. 27, 1141-1143 (2002). doi: 10.1364/OL.27.001141
[27] Li, G. X. et al. Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light. Nano. Lett. 13, 4148-4151 (2013). doi: 10.1021/nl401734r
[28] Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. Roy. Soc. A Math. Phys. Eng. Sci. 392, 45-57 (1984).
[29] Pancharatnam, S. Generalized theory of interference and its applications. Proc. Indian Acad. Sci. Sect. A 44, 398-417 (1956). doi: 10.1007/BF03046095
[30] Luo, W. J., Xiao, S. Y., He, Q., Sun, S. L. & Zhou, L. Photonic spin hall effect with nearly 100% efficiency. Adv. Opt. Mater. 3, 1102-1108 (2015). doi: 10.1002/adom.201500068
[31] Luo, W. J., Sun, S. L., Xu, H. X., He, Q. & Zhou, L. Transmissive ultrathin Pancharatnam-Berry metasurfaces with nearly 100% efficiency. Phys. Rev. Appl. 7, 044033 (2017). doi: 10.1103/PhysRevApplied.7.044033
[32] Wu, P. C. et al. Visible metasurfaces for on-chip polarimetry. ACS Photonics 5, 2568-2573 (2018). doi: 10.1021/acsphotonics.7b01527
[33] Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937-943 (2015). doi: 10.1038/nnano.2015.186
[34] Zhang, H. F. et al. Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime. Photonics Res 6, 24-29 (2018). doi: 10.1364/PRJ.6.000024
[35] Lee, W. S. L. et al. Broadband terahertz circular-polarization beam splitter. Adv. Opt. Mater. 6, 1700852 (2018). doi: 10.1002/adom.201700852
[36] Ma, Z. J. et al. Terahertz all-dielectric magnetic mirror metasurfaces. ACS Photonics 3, 1010-1018 (2016). doi: 10.1021/acsphotonics.6b00096
[37] Zhao, J. et al. Controlling the bandwidth of terahertz low-scattering metasurfaces. Adv. Opt. Mater. 4, 1773-1779 (2016). doi: 10.1002/adom.201600202
[38] Ma, S. J. et al. Ultra-wide band reflective metamaterial wave plates for terahertz waves. EPL 117, 37007 (2017). doi: 10.1209/0295-5075/117/37007
[39] Wang, S. et al. Spin-selected focusing and imaging based on metasurface lens. Opt. Express 23, 26434-26441 (2015). doi: 10.1364/OE.23.026434
[40] Liu, S. et al. Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces. ACS Photonics 3, 1968-1977 (2016). doi: 10.1021/acsphotonics.6b00515
[41] Cong, L. Q., Xu, N. N., Han, J. G., Zhang, W. L. & Singh, R. A. Tunable dispersion-free terahertz metadevice with Pancharatnam-Berry-phase-enabled modulation and polarization control. Adv. Mater. 27, 6630-6636 (2015). doi: 10.1002/adma.201502716
[42] Khorasaninejad, M. & Capasso, F. Metalenses: versatile multifunctional photonic components. Science 358, eaam8100 (2017). doi: 10.1126/science.aam8100
[43] Wang, L. et al. Grayscale transparent metasurface holograms. Optica 3, 1504-1505 (2016). doi: 10.1364/OPTICA.3.001504
[44] Wang, S. M. et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13, 227-232 (2018). doi: 10.1038/s41565-017-0052-4
[45] Jahani, S. & Jacob, Z. All-dielectric metamaterials. Nat. Nanotechnol. 11, 23-36 (2016). doi: 10.1038/nnano.2015.304
[46] Zhou, L., Wen, W. J., Chan, C. T. & Sheng, P. Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields. Phys. Rev. Lett. 94, 243905 (2005). doi: 10.1103/PhysRevLett.94.243905
[47] Sun, W. J., He, Q., Hao, J. M. & Zhou, L. A transparent metamaterial to manipulate electromagnetic wave polarizations. Opt. Lett. 36, 927-929 (2011). doi: 10.1364/OL.36.000927
[48] Ding, K., Ng, J., Zhou, L. & Chan, C. T. Realization of optical pulling forces using chirality. Phys. Rev. A. 89, 063825 (2014). doi: 10.1103/PhysRevA.89.063825
[49] Tkachenko, G. & Brasselet, E. Helicity-dependent three-dimensional optical trapping of chiral microparticles. Nat. Commun. 5, 4491 (2014). doi: 10.1038/ncomms5491