[1] |
Flusberg B. A., et al. Fiber-optic fluorescence imaging. Nature Methods 2, 941-950 (2005). doi: 10.1038/nmeth820 |
[2] |
Muldoon T. J., et al. Subcellular-resolution molecular imaging within living tissue by fiber microendoscopy. Optics Express 15, 16413-16423 (2007). doi: 10.1364/OE.15.016413 |
[3] |
Stibůrek M., et al. 110 μm thin endo-microscope for deep-brain in vivo observations of neuronal connectivity, activity and blood flow dynamics. Nature Communications 14, 1897 (2023). doi: 10.1038/s41467-023-36889-z |
[4] |
Koukourakis N., et al. Investigation of human organoid retina with digital holographic transmission matrix measurements. Light: Advanced Manufacturing 3, 211-225 (2022). |
[5] |
Sun J. W., et al. AI-driven projection tomography with multicore fibre-optic cell rotation. Nature Communications 15, 147 (2024). doi: 10.1038/s41467-023-44280-1 |
[6] |
Untracht G. R., Karnowski K., & Sampson D. D. Imaging the small with the small: Prospects for photonics in micro-endomicroscopy for minimally invasive cellular-resolution bioimaging. APL Photonics 6, 060901 (2021). doi: 10.1063/5.0052258 |
[7] |
Sun J. W., et al. Lensless fiber endomicroscopy in biomedicine. PhotoniX 5, 18 (2024). doi: 10.1186/s43074-024-00133-8 |
[8] |
Han J. - H., Lee J., & Kang J. U. Pixelation effect removal from fiber bundle probe based optical coherence tomography imaging. Optics Express 18, 7427-7439 (2010). doi: 10.1364/OE.18.007427 |
[9] |
Čižmár T., & Dholakia K. Exploiting multimode waveguides for pure fibre-based imaging. Nature Communications 3, 1027 (2012). doi: 10.1038/ncomms2024 |
[10] |
Andresen E. R., et al. Ultrathin endoscopes based on multicore fibers and adaptive optics: a status review and perspectives. Journal of Biomedical Optics 21, 121506 (2016). doi: 10.1117/1.JBO.21.12.121506 |
[11] |
Badt N., & Katz O. Real-time holographic lensless micro-endoscopy through flexible fibers via fiber bundle distal holography. Nature Communications 13, 6055 (2022). doi: 10.1038/s41467-022-33462-y |
[12] |
Gordon G. S. D., et al. Coherent imaging through multicore fibres with applications in endoscopy. Journal of Lightwave Technology 37, 5733-5745 (2019). doi: 10.1109/JLT.2019.2932901 |
[13] |
Tsvirkun V., et al. Widefield lensless endoscopy with a multicore fiber. Optics Letters 41, 4771-4774 (2016). doi: 10.1364/OL.41.004771 |
[14] |
Ohayon S., et al. Minimally invasive multimode optical fiber microendoscope for deep brain fluorescence imaging. Biomedical Optics Express 9, 1492-1509 (2018). doi: 10.1364/BOE.9.001492 |
[15] |
Choi Y., et al. Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber. Physical Review Letters 109, 203901 (2012). doi: 10.1103/PhysRevLett.109.203901 |
[16] |
Sivankutty S., et al. Extended field-of-view in a lensless endoscope using an aperiodic multicore fiber. Optics Letters 41, 3531-3534 (2016). doi: 10.1364/OL.41.003531 |
[17] |
Ren W. H., & Tan Z. W. A study on the coupling coefficients for multi-core fibers. Optik 127, 3248-3252 (2016). doi: 10.1016/j.ijleo.2015.12.021 |
[18] |
Tsvirkun V., et al. Flexible lensless endoscope with a conformationally invariant multi-core fiber. Optica 6, 1185-1189 (2019). doi: 10.1364/OPTICA.6.001185 |
[19] |
Stephan R., et al. Aperiodic multi-core fibers for lens-less endoscopy. Proceedings of. SPIE 12372 , Optical Fibers and Sensors for Medical Diagnostics, Treatment and Environmental Applications XXⅢ. San Francisco, CA, USA: SPIE, 2023, 1237208. |
[20] |
Sivankutty S., et al. Nonlinear imaging through a Fermat’s golden spiral multicore fiber. Optics Letters 43, 3638-3641 (2018). doi: 10.1364/OL.43.003638 |
[21] |
Kim Y., et al. Semi-random multicore fibre design for adaptive multiphoton endoscopy. Optics Express 26, 3661-3673 (2018). doi: 10.1364/OE.26.003661 |
[22] |
Napiorkowski M., et al. Twist induced mode confinement in partially open ring of holes. Journal of Lightwave Technology 38, 1372-1381 (2020). doi: 10.1109/JLT.2019.2941726 |
[23] |
Kihara M., et al. Characteristics of thermally expanded core fiber. Journal of Lightwave Technology 14, 2209-2214 (1996). |
[24] |
Shiraishi K., Yanagi T., & Kawakami S. Light-propagation characteristics in thermally diffused expanded core fibers. Journal of Lightwave Technology 11, 1584-1591 (1993). doi: 10.1109/50.249900 |
[25] |
Zhou X. F., et al. Mode-field adaptor between large-mode-area fiber and single-mode fiber based on fiber tapering and thermally expanded core technique. Applied Optics 53, 5053-5057 (2014). doi: 10.1364/AO.53.005053 |
[26] |
Cheng S., et al. Tapered multicore fiber interferometer for ultra-sensitive temperature sensing with thermooptical materials. Optics Express 29, 35765-35775 (2021). doi: 10.1364/OE.441896 |
[27] |
Jia Q. N., et al. Fibre tapering using plasmonic microheaters and deformation-induced pull. Light: Advanced Manufacturing 4, 5 (2023). |
[28] |
El Moussawi F., et al. Tapered multicore fiber for lensless endoscopes. ACS Photonics 9, 2547-2554 (2022). doi: 10.1021/acsphotonics.2c00661 |
[29] |
Stasio N., et al. Light control in a multicore fiber using the memory effect. Optics Express 23, 30532-30544 (2015). doi: 10.1364/OE.23.030532 |
[30] |
Thompson A. J., et al. Adaptive phase compensation for ultracompact laser scanning endomicroscopy. Optics Letters 36, 1707-1709 (2011). doi: 10.1364/OL.36.001707 |
[31] |
Kuschmierz R., et al. Ultra-thin 3D lensless fiber endoscopy using diffractive optical elements and deep neural networks. Light: Advanced Manufacturing 2, 415-424 (2021). |
[32] |
Lich J., et al. Single-shot 3D incoherent imaging with diffuser endoscopy. Light: Advanced Manufacturing 5, 15 (2024). |
[33] |
Porat A., et al. Widefield lensless imaging through a fiber bundle via speckle correlations. Optics Express 24, 16835-16855 (2016). doi: 10.1364/OE.24.016835 |
[34] |
Sun J. W., et al. Calibration-free quantitative phase imaging in multi-core fiber endoscopes using end-to-end deep learning. Optics Letters 49, 342-345 (2024). doi: 10.1364/OL.509772 |
[35] |
Sun J. W., et al. Quantitative phase imaging through an ultra-thin lensless fiber endoscope. Light: Science & Applications 11, 204 (2022). |
[36] |
Kuschmierz R., et al. Self-calibration of lensless holographic endoscope using programmable guide stars. Optics Letters 43, 2997-3000 (2018). doi: 10.1364/OL.43.002997 |
[37] |
Vellekoop I. M., & Mosk A. P. Focusing coherent light through opaque strongly scattering media. Optics Letter 32, 2309-2311 (2007). doi: 10.1364/OL.32.002309 |