[1] Strogatz, S. H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, 2nd ed. (Westview Press, 2015).
[2] Haken, H. Analogy between higher instabilities in fluids and lasers. Phys. Lett. A 53, 77–78 (1975). doi: 10.1016/0375-9601(75)90353-9
[3] Yamada, T. & Graham, R. Chaos in a laser system under a modulated external field. Phys. Rev. Lett. 45, 1322–1324 (1980). doi: 10.1103/PhysRevLett.45.1322
[4] Arecchi, F. T., Meucci, R., Puccioni, G. & Tredicce, J. Experimental evidence of subharmonic bifurcations, multistability and turbulence in a Q-switched gas laser. Phys. Rev. Lett. 49, 1217–1220 (1982). doi: 10.1103/PhysRevLett.49.1217
[5] Weiss, C. O., Abraham, N. B. & Hübner, U. Homoclinic and heteroclinic chaos in a single-mode laser. Phys. Rev. Lett. 61, 1587–1590 (1988). doi: 10.1103/PhysRevLett.61.1587
[6] Bracikowski, C. & Roy, R. Chaos in a multimode solid-state laser system. Chaos 1, 49–64 (1991). doi: 10.1063/1.165817
[7] VanWiggeren, G. D. & Roy, R. Communication with chaotic lasers. Science 279, 1198–1200 (1998). doi: 10.1126/science.279.5354.1198
[8] Ohtsubo, J. Semiconductor Lasers: Stability, Instability and Chaos, 4th ed. (Springer, 2017).
[9] Sciamanna, M. & Shore, K. A. Physics and applications of laser diode chaos. Nat. Photonics 9, 151–162 (2015). doi: 10.1038/nphoton.2014.326
[10] Virte, M., Panajotov, K., Thienpont, H. & Sciamanna, M. Deterministic polarization chaos from a laser diode. Nat. Photonics 7, 60–65 (2013). doi: 10.1038/nphoton.2012.286
[11] Albert, F. et al. Observing chaos for quantum-dot microlasers with external feedback. Nat. Commun. 2, 366 (2011). doi: 10.1038/ncomms1370
[12] Kreinberg, S. et al. Mutual coupling and synchronization of optically coupled quantum-dot micropillar lasers at ultra-low light levels. Nat. Commun. 10, 1539 (2019). doi: 10.1038/s41467-019-09559-2
[13] Argyris, A. et al. Chaos-based communications at high bit rates using commercial fibre-optic links. Nature 438, 343–346 (2005). doi: 10.1038/nature04275
[14] Uchida, A. et al. Fast physical random bit generation with chaotic semiconductor lasers. Nat. Photonics 2, 728–732 (2008). doi: 10.1038/nphoton.2008.227
[15] Lin, F. Y. & Liu, J. M. Chaotic lidar. IEEE J. Sel. Top. Quantum Electron. 10, 991–997 (2004). doi: 10.1109/JSTQE.2004.835296
[16] Brunner, D., Soriano, M. C., Mirasso, C. R. & Fischer, I. Parallel photonic information processing at gigabyte per second data rates using transient states. Nat. Commun. 4, 1364 (2013). doi: 10.1038/ncomms2368
[17] Kuriki, Y., Nakayama, J., Takano, K. & Uchida, A. Impact of input mask signals on delay-based photonic reservoir computing with semiconductor lasers. Opt. Express 26, 5777–5788 (2018). doi: 10.1364/OE.26.005777
[18] Chen, Z. & Segev, M. Highlighting photonics: looking into the next decade. eLight 1, 2 (2021). doi: 10.1186/s43593-021-00002-y
[19] Didier, D., Glorieux, P. & Hennequin, D. Chaos in a CO2 laser with modulated parameters: experiments and numerical simulations. Phys. Rev. A 36, 4775 (1987). doi: 10.1103/PhysRevA.36.4775
[20] Gioggia, R. S. & Abraham, N. B. Routes to chaotic output from a single-mode, dc-excited laser. Phys. Rev. Lett. 51, 650–653 (1983). doi: 10.1103/PhysRevLett.51.650
[21] Uchida, A. Optical Communication with Chaotic Lasers: Applications of Nonlinear Dynamics and Synchronization. (Wiley, 2012).
[22] Jumpertz, L., Schires, K., Carras, M., Sciamanna, M. & Grillot, F. Chaotic light at mid-infrared wavelength. Light-Sci. Appl 5, e16088 (2016). doi: 10.1038/lsa.2016.88
[23] Spitz, O., Wu, J., Carras, M., Wong, C. W. & Grillot, F. Low-frequency fluctuations of a mid-infrared quantum cascade laser operating at cryogenic temperatures. Laser Phys. Lett. 15, 116201 (2018). doi: 10.1088/1612-202X/aadc5a
[24] Spitz, O. et al. Investigation of chaotic and spiking dynamics in mid-infrared quantum cascade lasers operating continuous-wave and under current modulation. IEEE J. Sel. Top. Quantum Electron. 25, 1200311 (2019). http://ieeexplore.ieee.org/document/8815933
[25] Spitz, O., Wu, J., Carras, M., Wong, C. W. & Grillot, F. Chaotic optical power dropouts driven by low frequency bias forcing in a mid-infrared quantum cascade laser. Sci. Rep. 9, 4451 (2019). doi: 10.1038/s41598-019-40861-7
[26] Pérez, G. & Cerdeira, H. A. Extracting messages masked by chaos. Phys. Rev. Lett. 74, 1970–1973 (1995). doi: 10.1103/PhysRevLett.74.1970
[27] Qi, G., van Wyk, M. A., van Wyk, B. J. & Chen, G. On a new hyperchaotic system. Phys. Lett. A 372, 124–136 (2008). doi: 10.1016/j.physleta.2007.10.082
[28] Spitz, O. et al. Private communication with quantum cascade laser photonic chaos. Nat. Commun. 12, 3327 (2021). doi: 10.1038/s41467-021-23527-9
[29] Sacher, J., Elsässer, W. & Gobel, E. O. Intermittency in the coherence collapse of a semiconductor-laser with external feedback. Phys. Rev. Lett. 63, 2224–2227 (1989). doi: 10.1103/PhysRevLett.63.2224
[30] Fischer, I. et al. Fast pulsing and chaotic itinerancy with a drift in the coherence collapse of semiconductor lasers. Phys. Rev. Lett. 76, 220–223 (1996). doi: 10.1103/PhysRevLett.76.220
[31] Yang, R. Q. Infrared laser based on intersubband transitions in quantum wells. Superlattices Microstruct. 17, 77–83 (1995). doi: 10.1006/spmi.1995.1017
[32] Lin, C. H. et al. Type-II interband quantum cascade laser at 3.8 μm. Electron. Lett. 33, 598–599 (1997). doi: 10.1049/el:19970421
[33] Tian, Z. et al. InAs-based interband cascade lasers with emission wavelength at 10.4 μm. Electron. Lett. 48, 113–114 (2012). doi: 10.1049/el.2011.3555
[34] Li, L. et al. MBE-grown long-wavelength interband cascade lasers on InAs substrates. J. Cryst. Growth 425, 369–372 (2015). doi: 10.1016/j.jcrysgro.2015.02.016
[35] Yang, R. Q. et al. InAs-based interband cascade lasers. IEEE J. Sel. Top. Quantum Electron. 25, 1200108 (2019). http://ieeexplore.ieee.org/document/8714016
[36] Vurgaftman, I. et al. Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption. Nat. Commun. 2, 585 (2011). doi: 10.1038/ncomms1595
[37] Canedy, C. L. et al. Pulsed and CW performance of 7-stage interband cascade lasers. Opt. Express 22, 7702–7710 (2014). doi: 10.1364/OE.22.007702
[38] Kim, M. et al. High-power continuous-wave interband cascade lasers with 10 active stages. Opt. Express 23, 9664–9672 (2015). doi: 10.1364/OE.23.009664
[39] Vurgaftman, I. et al. Mid-IR type-II interband cascade lasers. IEEE J. Sel. Top. Quantum Electron. 17, 1435–1444 (2011). doi: 10.1109/JSTQE.2011.2114331
[40] Vurgaftman, I. et al. Interband cascade lasers with low threshold powers and high output powers. IEEE J. Sel. Top. Quantum Electron. 19, 1200210 (2013). doi: 10.1109/JSTQE.2012.2237017
[41] Deng, Y., Zhao, B. B. & Wang, C. Linewidth broadening factor of an interband cascade laser. Appl. Phys. Lett. 115, 181101 (2019). doi: 10.1063/1.5123005
[42] Tkach, R. & Chraplyvy, A. Regimes of feedback effects in 1.5-μm distributed feedback lasers. J. Lightwave Technol. 4, 1655–1661 (1986). doi: 10.1109/JLT.1986.1074666
[43] Chan, S. C. & Liu, J. M. Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics. IEEE J. Sel. Top. Quantum Electron. 10, 1025–1032 (2004). doi: 10.1109/JSTQE.2004.836020
[44] Hwang, S. K., Liu, J. M. & White, J. K. Characteristics of period-one oscillations in semiconductor lasers subject to optical injection. IEEE J. Sel. Top. Quantum Electron. 10, 974–981 (2004). doi: 10.1109/JSTQE.2004.836017
[45] Simpson, T. B., Liu, J. M., AlMulla, M., Usechak, N. G. & Kovanis, V. Limit-cycle dynamics with reduced sensitivity to perturbations. Phys. Rev. Lett. 112, 023901 (2014). doi: 10.1103/PhysRevLett.112.023901
[46] Wang, C. et al. Optically injected InAs/GaAs quantum dot laser for tunable photonic microwave generation. Opt. Lett. 41, 1153–1156 (2016). doi: 10.1364/OL.41.001153
[47] Zhang, L. & Chan, S. C. Cascaded injection of semiconductor lasers in period-one oscillations for millimeter-wave generation. Opt. Lett. 44, 4905–4908 (2019). doi: 10.1364/OL.44.004905
[48] Tseng, C. H., Lin, C. T. & Hwang, S. K. V and W-band microwave generation and modulation using semiconductor lasers at period-one nonlinear dynamics. Opt. Lett. 45, 6819–6822 (2020). doi: 10.1364/OL.412327
[49] Lin, L. C., Liu, S. H. & Lin, F. Y. Stability of period-one (P1) oscillations generated by semiconductor lasers subject to optical injection or optical feedback. Opt. Express 25, 25523–25532 (2017). doi: 10.1364/OE.25.025523
[50] Wishon, M. J. et al. Low-noise X-band tunable microwave generator based on a semiconductor laser with feedback. IEEE Photonics Technol. Lett. 30, 1597–1600 (2018). doi: 10.1109/LPT.2018.2859748
[51] Li, S. S. et al. Stable period-one oscillations in a semiconductor laser under optical feedback from a narrowband fiber Bragg grating. Opt. Express 28, 21286–21299 (2020). doi: 10.1364/OE.396180
[52] Schunk, N. & Petermann, K. Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback. IEEE J. Quantum Electron 24, 1242–1247 (1988). doi: 10.1109/3.960
[53] Petermann, K. External optical feedback phenomena in semiconductor lasers. IEEE J. Sel. Top. Quantum Electron. 1, 480–489 (1995). doi: 10.1109/2944.401232
[54] Matsuda, M. et al. Low-noise characteristics on 1.3-μm-wavelength quantum-dot DFB lasers under external optical feedback. In 2018 IEEE International Semiconductor Laser Conference (ISLC) 1–2 (Santa Fe, NM, USA, 2018).
[55] Duan, J. et al. 1.3-μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon. IEEE Photonics Technol. Lett. 31, 345–348 (2019). doi: 10.1109/LPT.2019.2895049
[56] Helms, J. & Petermann, K. A simple analytic expression for the stable operation range of laser diodes with optical feedback. IEEE J. Quantum Electron 26, 833–836 (1990). doi: 10.1109/3.55523
[57] Fan, Z. F., Deng, Y., Ning, C., Liu, S. M. & Wang, C. Differential gain and gain compression of an overdamped interband cascade laser. Appl. Phys. Lett. 119, 081101 (2021). doi: 10.1063/5.0062500
[58] Mørk, J., Mark, J. & Tromborg, B. Route to chaos and competition between relaxation oscillations for a semiconductor laser with optical feedback. Phys. Rev. Lett. 65, 1999–2002 (1990). doi: 10.1103/PhysRevLett.65.1999
[59] Ye, J., Li, H. & McInerney, J. G. Period-doubling route to chaos in a semiconductor laser with weak optical feedback. Phys. Rev. A 47, 2249–2252 (1993). doi: 10.1103/PhysRevA.47.2249
[60] Deng, Y. & Wang, C. Rate equation modeling of interband cascade lasers on modulation and noise dynamics. IEEE J. Quantum Electron 56, 2300109 (2020). http://www.researchgate.net/publication/345241702_Rate_Equation_Modeling_of_Interband_Cascade_Lasers_on_Modulation_and_Noise_Dynamics
[61] Lang, R. & Kobayashi, K. External optical feedback effects on semiconductor injection laser properties. IEEE J. Quantum Electron 16, 347–355 (1980). doi: 10.1109/JQE.1980.1070479
[62] Wolf, A., Swift, J. B., Swinney, H. L. & Vastano, J. A. Determining Lyapunov exponents from a time-series. Phys. D. 16, 285–317 (1985). doi: 10.1016/0167-2789(85)90011-9
[63] Wolf, A. Wolf Lyapunov exponent estimation from a time series. MATLAB Central File Exchange https://www.mathworks.com/matlabcentral/fileexchange/48084-wolf-lyapunov-exponent-estimation-from-a-time-series (2014).
[64] Sprott, J. C. Chaos and Time-Series Analysis. (Oxford University Press, 2003).
[65] Ott, E. Chaos in Dynamical Systems. (Cambridge University Press, 2002).
[66] Coldren, L. A., Corzine, S. W. & Masanovic, M. L. Diode Lasers and Photonic Integrated Circuits, 2nd ed. (Wiley, 2012).
[67] Deng, Y., Zhao, B. B., Gu, Y. T. & Wang, C. Relative intensity noise of a continuous-wave interband cascade laser at room temperature. Opt. Lett. 44, 1375–1378 (2019). doi: 10.1364/OL.44.001375
[68] Soibel, A. et al. High-speed operation of interband cascade lasers. Electron. Lett. 45, 264–265 (2009). doi: 10.1049/el:20090079
[69] Lotfi, H. et al. High-frequency operation of a mid-infrared interband cascade system at room temperature. Appl. Phys. Lett. 108, 201101 (2016). doi: 10.1063/1.4950700
[70] Schwarz, B. et al. Monolithic frequency comb platform based on interband cascade lasers and detectors. Optica 6, 890–895 (2019). doi: 10.1364/OPTICA.6.000890
[71] Capua, A. et al. Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs/GaAs quantum dot laser. Opt. Express 15, 5388–5393 (2007). doi: 10.1364/OE.15.005388
[72] Zhou, Y. G., Zhao, X. Y., Cao, C. F., Gong, Q. & Wang, C. High optical feedback tolerance of InAs/GaAs quantum dot lasers on germanium. Opt. Express 26, 28131–28139 (2018). doi: 10.1364/OE.26.028131
[73] Ye, S. Y. & Ohtsubo, J. Experimental investigation of stability enhancement in semiconductor lasers with optical feedback. Opt. Rev. 5, 280–284 (1998). doi: 10.1007/s10043-998-0280-9
[74] Lenstra, D. Relaxation oscillation dynamics in semiconductor diode lasers with optical feedback. IEEE Photonics Technol. Lett. 25, 591–593 (2013). doi: 10.1109/LPT.2013.2246562
[75] Cohen, J. S., Drenten, R. R. & Verbeeck, B. H. The effect of optical feedback on the relaxation oscillation in semiconductor lasers. IEEE J. Quantum Electron 24, 1989–1995 (1988). doi: 10.1109/3.8533
[76] Liu, B., Ruan, Y., Yu, Y., Wang, B. & An, L. Influence of feedback optical phase on the relaxation oscillation frequency of a semiconductor laser and its application. Opt. Express 29, 3163–3172 (2021). doi: 10.1364/OE.414849
[77] Lin, F. Y. & Liu, J. M. Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback. Opt. Commun. 221, 173–180 (2003). doi: 10.1016/S0030-4018(03)01466-4
[78] Wang, X. G., Zhao, B. B., Deng, Y., Kovanis, V. & Wang, C. Nonlinear dynamics of a quantum cascade laser with tilted optical feedback. Phys. Rev. A 103, 023528 (2021). doi: 10.1103/PhysRevA.103.023528
[79] Lin, F. Y., Chao, Y. K. & Wu, T. C. Effective bandwidths of broadband chaotic signals. IEEE J. Quantum Electron 48, 1010–1014 (2012). doi: 10.1109/JQE.2012.2198195
[80] Zhao, B. B., Wang, X. G., Zhang, J. C. & Wang, C. Relative intensity noise of a mid-infrared quantum cascade laser: insensitivity to optical feedback. Opt. Express 27, 26639–26647 (2019). doi: 10.1364/OE.27.026639
[81] Zhao, B. B., Wang, X. G. & Wang, C. Strong optical feedback stabilized quantum cascade laser. ACS Photonics 7, 1255–1261 (2020). doi: 10.1021/acsphotonics.0c00189
[82] Vaschenko, G. et al. Temporal dynamics of semiconductor lasers with optical feedback. Phys. Rev. Lett. 81, 5536–5539 (1998). doi: 10.1103/PhysRevLett.81.5536
[83] Carr, T. W., Pieroux, D. & Mandel, P. Theory of a multimode semiconductor laser with optical feedback. Phys. Rev. A 63, 033817 (2001). doi: 10.1103/PhysRevA.63.033817
[84] Koryukin, I. V. & Mandel, P. Dynamics of semiconductor lasers with optical feedback: comparison of multimode models in the low-frequency fluctuation regime. Phys. Rev. A 70, 053819 (2004). doi: 10.1103/PhysRevA.70.053819
[85] Pan, M. W., Shi, B. P. & Gray, G. R. Semiconductor laser dynamics subject to strong optical feedback. Opt. Lett. 22, 166–168 (1997). doi: 10.1364/OL.22.000166
[86] Deng, Y., Zhao, B. B., Wang, X. G. & Wang, C. Narrow linewidth characteristics of interband cascade lasers. Appl. Phys. Lett. 116, 201101 (2020). doi: 10.1063/5.0006823
[87] Wu, J. G. et al. Direct generation of broadband chaos by a monolithic integrated semiconductor laser chip. Opt. Express 21, 23358–23364 (2013). doi: 10.1364/OE.21.023358
[88] Verschaffelt, G., Khoder, M. & Van der Sande, G. Random number generator based on an integrated laser with on-chip optical feedback. Chaos 27, 114310 (2017). doi: 10.1063/1.5007862
[89] Columbo, L. L. & Brambilla, M. Multimode regimes in quantum cascade lasers with optical feedback. Opt. Express 22, 10105–10118 (2014). doi: 10.1364/OE.22.010105
[90] Spitz, O. et al. Free-space communication with directly modulated mid-infrared quantum cascade devices. IEEE J. Sel. Top. Quantum Electron. 28, 1200109 (2022).
[91] Matsui, Y. et al. Low-chirp isolator-free 65-GHz-bandwidth directly modulated lasers. Nat. Photonics 15, 59–63 (2021). doi: 10.1038/s41566-020-00742-2
[92] Yamaoka, S. et al. Directly modulated membrane lasers with 108 GHz bandwidth on a high-thermal-conductivity silicon carbide substrate. Nat. Photonics 15, 28–35 (2021). doi: 10.1038/s41566-020-00700-y
[93] Sterczewski, L. A. et al. Mid-infrared dual-comb spectroscopy with room-temperature bi-functional interband cascade lasers and detectors. Appl. Phys. Lett. 116, 141102 (2020). doi: 10.1063/1.5143954
[94] Rodriguez, E. et al. Room-temperature, wide-band, quantum well infrared photodetector for microwave optical links at 4.9 μm wavelength. ACS Photonics 5, 3689–3694 (2018). doi: 10.1021/acsphotonics.8b00704
[95] Liu, G. & Chuang, S. L. Modeling of Sb-based type-II quantum cascade lasers. Phys. Rev. B 65, 165220 (2002). doi: 10.1103/PhysRevB.65.165220
[96] Forouhar, S. et al. Reliable mid-infrared laterally-coupled distributed-feedback interband cascade lasers. Appl. Phys. Lett. 105, 051110 (2014). doi: 10.1063/1.4892655