[1] Pu, Z. H. et al. Single-atom catalysts for electrochemical hydrogen evolution reaction: recent advances and future perspectives. Nano-Micro Lett. 12, 21 (2020). doi: 10.1007/s40820-019-0349-y
[2] Yang, M. & Flytzani-Stephanopoulos, M. Design of single-atom metal catalysts on various supports for the low-temperature water-gas shift reaction. Catal. Today 298, 216–225 (2017). doi: 10.1016/j.cattod.2017.04.034
[3] Yan, H. et al. Single-atom catalysts and their applications in organic chemistry. J. Mater. Chem. A 6, 8793–8814 (2018). doi: 10.1039/C8TA01940A
[4] Liu, J. et al. High performance platinum single atom electrocatalyst for oxygen reduction reaction. Nat. Commun. 8, 15938 (2017). doi: 10.1038/ncomms15938
[5] Cheng, N. C. et al. Single-atom catalysts: from design to application. Electrochem. Energy Rev. 2, 539–573 (2019). doi: 10.1007/s41918-019-00050-6
[6] Liu, D. B. et al. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat. Energy 4, 512–518 (2019). doi: 10.1038/s41560-019-0402-6
[7] Chen, Y. X. et al. Fabrication, characterization, and stability of supported single-atom catalysts. Catal. Sci. Technol. 7, 4250–4258 (2017). doi: 10.1039/C7CY00723J
[8] Wei, H. S. et al. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 5, 5634 (2014). doi: 10.1038/ncomms6634
[9] Lin, L. L. et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 544, 80–83 (2017). doi: 10.1038/nature21672
[10] Li, M. F. et al. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat. Catal. 2, 495–503 (2019). doi: 10.1038/s41929-019-0279-6
[11] Fei, H. L. et al. Single atom electrocatalysts supported on graphene or graphene-like carbons. Chem. Soc. Rev. 48, 5207–5241 (2019). doi: 10.1039/C9CS00422J
[12] Chen, Y. J. et al. Single-atom catalysts: synthetic strategies and electrochemical applications. Joule 2, 1242–1264 (2018). doi: 10.1016/j.joule.2018.06.019
[13] Zhang, J. et al. Cation vacancy stabilization of single-atomic-site Pt1/Ni(OH)x catalyst for diboration of alkynes and alkenes. Nat. Commun. 9, 1002 (2018). doi: 10.1038/s41467-018-03380-z
[14] Cheng, W. R. et al. Lattice-strained metal–organic-framework arrays for bifunctional oxygen electrocatalysis. Nat. Energy 4, 115–122 (2019). doi: 10.1038/s41560-018-0308-8
[15] Cheng, Y. et al. Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction. Adv. Mater. 30, 1706287 (2018). doi: 10.1002/adma.201706287
[16] Yao, Y. G. et al. High temperature shockwave stabilized single atoms. Nat. Nanotechnol. 14, 851–857 (2019). doi: 10.1038/s41565-019-0518-7
[17] Qu, Y. T. et al. Thermal emitting strategy to synthesize atomically dispersed Pt metal sites from bulk Pt metal. J. Am. Chem. Soc. 141, 4505–4509 (2019). doi: 10.1021/jacs.8b09834
[18] Jiang, K. et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 11, 893–903 (2018). doi: 10.1039/C7EE03245E
[19] Zhao, Y. et al. Integrated graphene systems by laser irradiation for advanced devices. Nano Today 12, 14–30 (2017). doi: 10.1016/j.nantod.2016.12.010
[20] Zeng, H. B. et al. Nanomaterials via laser ablation/irradiation in liquid: a review. Adv. Funct. Mater. 22, 1333–1353 (2012). doi: 10.1002/adfm.201102295
[21] Zhang, D. S., Gökce, B. & Barcikowski, S. Laser synthesis and processing of colloids: fundamentals and applications. Chem. Rev. 117, 3990–4103 (2017). doi: 10.1021/acs.chemrev.6b00468
[22] Gengler, R. Y. N. et al. Revealing the ultrafast process behind the photoreduction of graphene oxide. Nat. Commun. 4, 2560 (2013). doi: 10.1038/ncomms3560
[23] Moussa, S. et al. Laser assisted photocatalytic reduction of metal ions by graphene oxide. J. Mater. Chem. 21, 9608–9619 (2011). doi: 10.1039/c1jm11228g
[24] Yin, X. P. et al. Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 57, 9382–9386 (2018). doi: 10.1002/anie.201804817
[25] Jin, Z. S. et al. On the conditions and mechanism of PtO2 formation in the photoinduced conversion of H2PtCl6. J. Photochem. Photobiol. A: Chem. 81, 177–182 (1994). doi: 10.1016/1010-6030(94)03792-2
[26] Xuyen, N. T. et al. Hydrolysis-induced immobilization of Pt(acac)2 on polyimide-based carbon nanofiber mat and formation of Pt nanoparticles. J. Mater. Chem. 19, 1283–1288 (2009). doi: 10.1039/b813486c
[27] Labinger, J. A. & Bercaw, J. E. Understanding and exploiting C–H bond activation. Nature 417, 507–514 (2002). doi: 10.1038/417507a
[28] Sitko, R. et al. Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Trans. 42, 5682–5689 (2013). doi: 10.1039/c3dt33097d
[29] Mi, X. et al. Preparation of graphene oxide aerogel and its adsorption for Cu2+ ions. Carbon 50, 4856–4864 (2012). doi: 10.1016/j.carbon.2012.06.013
[30] Lowde, D. R. et al. Characterization of electro-oxidation catalysts prepared by ion-exchange of platinum salts with surface oxide groups on carbon. J. Chem. Soc., Faraday Trans. 1: Phys. Chem. Condens. Phases 75, 2312–2324 (1979). doi: 10.1039/f19797502312
[31] Cao, J. Y. et al. Two-step electrochemical intercalation and oxidation of graphite for the mass production of graphene oxide. J. Am. Chem. Soc. 139, 17446–17456 (2017). doi: 10.1021/jacs.7b08515
[32] Eckmann, A. et al. Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett. 12, 3925–3930 (2012). doi: 10.1021/nl300901a
[33] Cançado, L. G. et al. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11, 3190–3196 (2011). doi: 10.1021/nl201432g
[34] Lucchese, M. M. et al. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 48, 1592–1597 (2010). doi: 10.1016/j.carbon.2009.12.057
[35] Ferrari, A. C. & Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013). doi: 10.1038/nnano.2013.46
[36] Peng, Y. D. et al. Laser assisted solution synthesis of high performance graphene supported electrocatalysts. Adv. Funct. Mater. 30, 2001756 (2020). doi: 10.1002/adfm.202001756
[37] Guo, H. L. et al. Preparation of reduced graphene oxide by infrared irradiation induced photothermal reduction. Nanoscale 5, 9040–9048 (2013). doi: 10.1039/c3nr02805d
[38] Chen, X. et al. Nanosecond photothermal effects in plasmonic nanostructures. ACS Nano 6, 2550–2557 (2012). doi: 10.1021/nn2050032
[39] Schweizer, A. E. & Kerr, G. T. Thermal decomposition of hexachloroplatinic acid. Inorg. Chem. 17, 2326–2327 (1978). doi: 10.1021/ic50186a067
[40] Acik, M. et al. The role of oxygen during thermal reduction of graphene oxide studied by infrared absorption spectroscopy. J. Phys. Chem. C. 115, 19761–19781 (2011). doi: 10.1021/jp2052618
[41] Bagri, A. et al. Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem. 2, 581–587 (2010). doi: 10.1038/nchem.686
[42] Arul, R. et al. The mechanism of direct laser writing of graphene features into graphene oxide films involves photoreduction and thermally assisted structural rearrangement. Carbon 99, 423–431 (2016). doi: 10.1016/j.carbon.2015.12.038
[43] Sokolov, D. A., Shepperd, K. R. & Orlando, T. M. Formation of graphene features from direct laser-induced reduction of graphite oxide. J. Phys. Chem. Lett. 1, 2633–2636 (2010). doi: 10.1021/jz100790y
[44] Schmidt, H. et al. Ultraviolet laser ablation of polymers: spot size, pulse duration, and plume attenuation effects explained. J. Appl. Phys. 83, 5458–5468 (1998). doi: 10.1063/1.367377
[45] Lin, J. et al. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 5, 5714 (2014). doi: 10.1038/ncomms6714
[46] Luong, D. X. et al. Gram-scale bottom-up flash graphene synthesis. Nature 577, 647–651 (2020). doi: 10.1038/s41586-020-1938-0
[47] Renteria, J. D. et al. Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature. Adv. Funct. Mater. 25, 4664–4672 (2015). doi: 10.1002/adfm.201501429
[48] Zhou, Y. et al. Microstructuring of graphene oxide nanosheets using direct laser writing. Adv. Mater. 22, 67–71 (2010). doi: 10.1002/adma.200901942
[49] Huang, Z. P. et al. Cobalt phosphide nanorods as an efficient electrocatalyst for the hydrogen evolution reaction. Nano Energy 9, 373–382 (2014). doi: 10.1016/j.nanoen.2014.08.013
[50] Ferrari, A. G. M., Brownson, D. A. C. & Banks, C. E. Investigating the integrity of graphene towards the electrochemical hydrogen evolution reaction (HER). Sci. Rep. 9, 15961 (2019). doi: 10.1038/s41598-019-52463-4
[51] Xiao, L. et al. Fast adaptive thermal camouflage based on flexible VO2/Graphene/CNT thin films. Nano Lett. 15, 8365–8370 (2015). doi: 10.1021/acs.nanolett.5b04090