[1] Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. A 392, 45–57 (1984).
[2] Berry, M. Geometric phase memories. Nat. Phys. 6, 148–150 (2010). doi: 10.1038/nphys1608
[3] Lin, D. M. et al. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014). doi: 10.1126/science.1253213
[4] Zheng, G. X. et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10, 308–312 (2015). doi: 10.1038/nnano.2015.2
[5] Groever, B., Chen, W. T. & Capasso, F. Meta-lens doublet in the visible region. Nano Lett. 17, 4902–4907 (2017). doi: 10.1021/acs.nanolett.7b01888
[6] Wang, S. M. et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13, 227–232 (2018). doi: 10.1038/s41565-017-0052-4
[7] Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016). doi: 10.1126/science.aaf6644
[8] Li, Z. L. et al. Dielectric meta-holograms enabled with dual magnetic resonances in visible light. ACS Nano 11, 9382–9389 (2017). doi: 10.1021/acsnano.7b04868
[9] Yu, N. F. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713
[10] Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220–226 (2018). doi: 10.1038/s41565-017-0034-6
[11] Li, Z. L. et al. Full-space cloud of random points with a scrambling metasurface. Light: Sci. Appl. 7, 63 (2018). doi: 10.1038/s41377-018-0064-3
[12] Wen, D. D. et al. Helicity multiplexed broadband metasurface holograms. Nat. Commun. 6, 8241 (2015). doi: 10.1038/ncomms9241
[13] Yoon, G. et al. "Crypto-display" in dual-mode metasurfaces by simultaneous control of phase and spectral responses. ACS Nano 12, 6421–6428 (2018). doi: 10.1021/acsnano.8b01344
[14] Deng, J. et al. Multiplexed anticounterfeiting meta-image displays with single-sized nanostructures. Nano Lett. 20, 1830–1838 (2020). doi: 10.1021/acs.nanolett.9b05053
[15] Lee, I. H. et al. Selective photonic printing based on anisotropic Fabry–Perot resonators for dual-image holography and anti-counterfeiting. Opt. Express 27, 24512–24523 (2019). doi: 10.1364/OE.27.024512
[16] Jin, L. et al. Noninterleaved metasurface for (26−1) spin-and wavelength-encoded holograms. Nano Lett. 18, 8016–8024 (2018). doi: 10.1021/acs.nanolett.8b04246
[17] Li, J. X. et al. Addressable metasurfaces for dynamic holography and optical information encryption. Sci. Adv. 4, eaar6768 (2018). doi: 10.1126/sciadv.aar6768
[18] Yan, L. B. et al. Arbitrary and independent polarization control in situ via a single metasurface. Adv. Opt. Mater. 6, 1800728 (2018). doi: 10.1002/adom.201800728
[19] Zhang, Y. N. et al. Full-visible multifunctional aluminium metasurfaces by in situ anisotropic thermoplasmonic laser printing. Nanoscale Horiz. 4, 601–609 (2019). doi: 10.1039/C9NH00003H
[20] Zheng, G. X. et al. Ultracompact high-efficiency polarising beam splitter based on silicon nanobrick arrays. Opt. Express 24, 6749–6757 (2016). doi: 10.1364/OE.24.006749
[21] Jang, J. et al. Kerker-conditioned dynamic cryptographic nanoprints. Adv. Opt. Mater. 7, 1801070 (2019). doi: 10.1002/adom.201970016
[22] Goh, X. M. et al. Three-dimensional plasmonic stereoscopic prints in full colour. Nat. Commun. 5, 5361 (2014). doi: 10.1038/ncomms6361
[23] Fu, R. et al. Reconfigurable step-zoom metalens without optical and mechanical compensations. Opt. Express 27, 12221–12230 (2019). doi: 10.1364/OE.27.012221
[24] Deng, J. et al. Depth perception based 3D holograms enabled with polarization-independent metasurfaces. Opt. Express 26, 11843–11849 (2018). doi: 10.1364/OE.26.011843
[25] Arbabi, A. et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937–943 (2015). doi: 10.1038/nnano.2015.186
[26] Mueller, J. P. B. et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett. 118, 113901 (2017). doi: 10.1103/PhysRevLett.118.113901
[27] Wu, L., Tao, J. & Zheng, G. X. Controlling phase of arbitrary polarizations using both the geometric phase and the propagation phase. Phys. Rev. B 97, 245426 (2018). doi: 10.1103/PhysRevB.97.245426
[28] Zhao, R. Z. et al. Multichannel vectorial holographic display and encryption. Light: Sci. Appl. 7, 95 (2018). doi: 10.1038/s41377-018-0091-0
[29] Hu, Y. Q. et al. Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface. Nano Lett. 20, 994–1002 (2020). doi: 10.1021/acs.nanolett.9b04107
[30] Rubin, N. A. et al. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science 365, eaax1839 (2019). doi: 10.1126/science.aax1839
[31] Bao, Y. J. et al. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control. Light: Sci. Appl. 8, 95 (2019). doi: 10.1038/s41377-019-0206-2
[32] Overvig, A. C. et al. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase. Light: Sci. Appl. 8, 92 (2019). doi: 10.1038/s41377-019-0201-7
[33] Zhang, C. M. et al. Multichannel metasurfaces for anticounterfeiting. Phys. Rev. Appl. 12, 034028 (2019). doi: 10.1103/PhysRevApplied.12.034028
[34] Chen, R. et al. Multifunctional metasurface: coplanar embedded design for meta-lens and nano-printed display. ACS Photonics https://doi.org/10.1021/acsphotonics.9b01795 (2020).
[35] Wen, D. D. et al. Multifunctional dielectric metasurfaces consisting of color holograms encoded into color printed images. Adv. Funct. Mater. 30, 1906415 (2020). doi: 10.1002/adfm.201906415
[36] Wei, Q. S. et al. Simultaneous spectral and spatial modulation for color printing and holography using all-dielectric metasurfaces. Nano Lett. 19, 8964–8971 (2019). doi: 10.1021/acs.nanolett.9b03957
[37] Lim, K. T. P. et al. Holographic colour prints for enhanced optical security by combined phase and amplitude control. Nat. Commun. 10, 25 (2019). doi: 10.1038/s41467-018-07808-4
[38] Hu, Y. Q. et al. 3D-integrated metasurfaces for full-colour holography. Light: Sci. Appl. 8, 86 (2019). doi: 10.1038/s41377-019-0198-y
[39] Luo, X. H. et al. Integrated metasurfaces with microprints and helicity-multiplexed holograms for real-time optical encryption. Adv. Opt. Mater. https://doi.org/10.1002/adom.201902020 (2020).
[40] Freese, W. et al. Design of binary subwavelength multiphase level computer generated holograms. Opt. Lett. 35, 676–678 (2010). doi: 10.1364/OL.35.000676
[41] Kirkpatrick, S., Gelatt, C. D. Jr. & Vecchi, M. P. Optimization by simulated annealing. Science 220, 671–680 (1983). doi: 10.1126/science.220.4598.671
[42] Dai, Q. et al. Ultracompact, high-resolution and continuous grayscale image display based on resonant dielectric metasurfaces. Opt. Express 27, 27927–27935 (2019). doi: 10.1364/OE.27.027927
[43] Yue, F. Y. et al. High-resolution grayscale image hidden in a laser beam. Light: Sci. Appl. 7, 17129 (2018). doi: 10.1038/lsa.2017.129
[44] Zang, X. F. et al. Polarization encoded color image embedded in a dielectric metasurface. Adv. Mater. 30, 1707499 (2018). doi: 10.1002/adma.201707499
[45] Deng, J. et al. Spatial frequency multiplexed meta-holography and meta-nanoprinting. ACS Nano 13, 9237–9246 (2019). doi: 10.1021/acsnano.9b03738
[46] Wang, B. et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms. Nano Lett. 16, 5235–5240 (2016). doi: 10.1021/acs.nanolett.6b02326
[47] Yang, Y. M. et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett. 14, 1394–1399 (2014). doi: 10.1021/nl4044482
[48] Khorasaninejad, M. et al. Polarization-insensitive metalenses at visible wavelengths. Nano Lett. 16, 7229–7234 (2016). doi: 10.1021/acs.nanolett.6b03626
[49] Fan, Q. B. et al. Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible. Nano Lett. 19, 1158–1165 (2019). doi: 10.1021/acs.nanolett.8b04571
[50] Schadt, M. et al. Photo-generation of linearly polymerized liquid crystal aligning layers comprising novel, integrated optically patterned retarders and color filters. Jpn. J. Appl. Phys. 34, 3240–3249 (1995). doi: 10.1143/JJAP.34.3240