[1] |
Prevedel, R. et al. Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy. Nature Methods 11, 727-730 (2014). doi: 10.1038/nmeth.2964 |
[2] |
Resendez, S. L. & Stuber, G. D. In vivo calcium imaging to illuminate neurocircuit activity dynamics underlying naturalistic behavior. Neuropsychopharmacology 40, 238 (2015). doi: 10.1038/npp.2014.206 |
[3] |
Jacob, A. D. et al. A compact head-mounted endoscope for in vivo calcium imaging in freely behaving mice. Current Protocols in Neuroscience 84, e51 (2018). doi: 10.1002/cpns.51 |
[4] |
Stirman, J. N. et al. Wide field-of-view, multiregion, two-photon imaging of neuronal activity in the mammalian brain. Nature biotechnology 34, 857-862 (2016). doi: 10.1038/nbt.3594 |
[5] |
Bouchard, M. B. et al. Swept confocally-aligned planar excitation (SCAPE) microscopy for high-speed volumetric imaging of behaving organisms. Nature Photonics 9, 113-119 (2015). doi: 10.1038/nphoton.2014.323 |
[6] |
Liu, J. D. et al. Light field endoscopy and its parametric description. Optics Letters 42, 1804-1807 (2017). doi: 10.1364/OL.42.001804 |
[7] |
Zhou, P. et al. Light field endoscope calibration based on virtual objective lens and virtual feature points. Optical Engineering 59, 104101 (2020). |
[8] |
Aljasem, K. et al. Scanning and tunable micro-optics for endoscopic optical coherence tomography. Journal of Microelectromechanical Systems 20, 1462-1472 (2011). doi: 10.1109/JMEMS.2011.2167656 |
[9] |
Wurster, L. M. et al. Endoscopic optical coherence tomography angiography using a forward imaging piezo scanner probe. Journal of Biophotonics 12, e201800382 (2019). doi: 10.1002/jbio.201800382 |
[10] |
Geng, J. & Xie, J. Review of 3-d endoscopic surface imaging techniques. IEEE Sensors Journal 14, 945-960 (2014). doi: 10.1109/JSEN.2013.2294679 |
[11] |
Li, J. W. et al. Ultrathin monolithic 3D printed optical coherence tomography endoscopy for preclinical and clinical use. Light: Science & Applications 9, 1-10 (2020). |
[12] |
Kirsten, L. et al. Endoscopic optical coherence tomography with wide field-of-view for the morphological and functional assessment of the human tympanic membrane. Journal of Biomedical Optics 24, 031017 (2018). |
[13] |
Čižmár, T. & Dholakia, K. Exploiting multimode waveguides for pure fibre-based imaging. Nature Communications 3, 1027 (2012). doi: 10.1038/ncomms2024 |
[14] |
Turtaev, S. et al. High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging. Light: Science & Applications 7, 92 (2018). |
[15] |
Caramazza, P. et al. Transmission of natural scene images through a multimode fibre. Nature Communications 10, 1-6 (2019). doi: 10.1038/s41467-018-07882-8 |
[16] |
Zhu, C. Y. et al. Image reconstruction through a multimode fiber with a simple neural network architecture. Scientific Reports 11, 896 (2021). doi: 10.1038/s41598-020-79646-8 |
[17] |
Zhang, Q. et al. Learning the matrix of few-mode fibers for high-fidelity spatial mode transmission. APL Photonics 7, 066104 (2022). doi: 10.1063/5.0088605 |
[18] |
Rothe, S. et al. Intensity-only mode decomposition on multimode fibers using a densely connected convolutional network. Journal of Lightwave Technology 39, 1672-1679 (2021). doi: 10.1109/JLT.2020.3041374 |
[19] |
Wen, Z. et al. Single multimode fibre for in vivo light-field-encoded endoscopic imaging. Nature Photonics 17, 679-687 (2023). doi: 10.1038/s41566-023-01240-x |
[20] |
Porat, A. et al. Widefield lensless imaging through a fiber bundle via speckle correlations. Optics Express 24, 16835-16855 (2016). doi: 10.1364/OE.24.016835 |
[21] |
Weiss, U. & Katz, O. Two-photon lensless micro-endoscopy with in-situ wavefront correction. Optics Express 26, 28808-28817 (2018). doi: 10.1364/OE.26.028808 |
[22] |
Tsvirkun, V. et al. Flexible lensless endoscope with a conformationally invariant multi-core fiber. Optica 6, 1185-1189 (2019). doi: 10.1364/OPTICA.6.001185 |
[23] |
Sun, J. W. et al. Real-time complex light field generation through a multi-core fiber with deep learning. Scientific Reports 12, 7732 (2022). doi: 10.1038/s41598-022-11803-7 |
[24] |
Stasio, N., Moser, C. & Psaltis, D. Calibration-free imaging through a multicore fiber using speckle scanning microscopy. Optics Letters 41, 3078-3081 (2016). doi: 10.1364/OL.41.003078 |
[25] |
Sun, J. W. et al. Quantitative phase imaging through an ultra-thin lensless fiber endoscope. Light: Science & Applications 11, 204 (2022). |
[26] |
Zhou, Y. et al. Light-field micro-endoscopy using a fiber bundle: a snapshot 3d epi-fluorescence endoscope. Photon. Res. 10, 2247-2260 (2022). doi: 10.1364/PRJ.464051 |
[27] |
Kang, M. et al. Fourier holographic endoscopy for imaging continuously moving objects. Optics Express 31, 11705-11716 (2023). doi: 10.1364/OE.482923 |
[28] |
Badt, N. & Katz, O. Real-time holographic lensless micro-endoscopy through flexible fibers via fiber bundle distal holography. Nature Communications 13, 6055 (2022). doi: 10.1038/s41467-022-33462-y |
[29] |
Choi, W. et al. Flexible-type ultrathin holographic endoscope for microscopic imaging of unstained biological tissues. Nature Communications 13, 4469 (2022). doi: 10.1038/s41467-022-32114-5 |
[30] |
Di Leonardo, R. & Bianchi, S. Hologram transmission through multi-mode optical fibers. Optics Express 19, 247-254 (2011). doi: 10.1364/OE.19.000247 |
[31] |
Scharf, E. et al. Video-rate lensless endoscope with self-calibration using wavefront shaping. Optics Letters 45, 3629-3632 (2020). doi: 10.1364/OL.394873 |
[32] |
Stellinga, D. et al. Time-of-flight 3D imaging through multimode optical fibers. Science 374, 1395-1399 (2021). doi: 10.1126/science.abl3771 |
[33] |
Wu, J. C. et al. Single-shot lensless imaging with fresnel zone aperture and incoherent illumination. Light: Science & Applications 9, 53 (2020). |
[34] |
Shin, J. et al. A minimally invasive lens-free computational microendoscope. Science Advances 5, eaaw5595 (2019). doi: 10.1126/sciadv.aaw5595 |
[35] |
Anand, V., Rosen, J. & Juodkazis, S. Review of engineering techniques in chaotic coded aperture imagers. Light: Advanced Manufacturing 3, 24 (2022). |
[36] |
Vellekoop, I. M., Lagendijk, A. & Mosk, A. P. Exploiting disorder for perfect focusing. Nature Photonics 4, 320-322 (2010). doi: 10.1038/nphoton.2010.3 |
[37] |
van Putten, E. G. et al. Scattering lens resolves sub- 100 nm structures with visible light. Phys. Rev. Lett. 106, 193905 (2011). doi: 10.1103/PhysRevLett.106.193905 |
[38] |
Li, D. & Yao, Y. Scattering-lens based quantum imaging beyond shot noise. Scientific Reports 11, 7785 (2021). doi: 10.1038/s41598-021-85846-7 |
[39] |
Yanny, K. et al. Miniscope3D: optimized single-shot miniature 3D fluorescence microscopy. Light: Science & Applications 9, 171 (2020). |
[40] |
Antipa, N. et al. Diffusercam: lensless single-exposure 3D imaging. Optica 5, 1-9 (2018). doi: 10.1364/OPTICA.5.000001 |
[41] |
Lyu, M. et al. Deep-learning-based ghost imaging. Scientific Reports 7, 17865 (2017). doi: 10.1038/s41598-017-18171-7 |
[42] |
Li, S. et al. Imaging through glass diffusers using densely connected convolutional networks. Optica 5, 803-813 (2018). doi: 10.1364/OPTICA.5.000803 |
[43] |
Li, Y. Z., X ue, Y. J. & Tian, L. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media. Optica 5, 1181-1190 (2018). doi: 10.1364/OPTICA.5.001181 |
[44] |
Cheng, Q. Q. et al. De-noising imaging through diffusers with autocorrelation. Applied Optics 60, 7686-7695 (2021). doi: 10.1364/AO.425099 |
[45] |
Khan, S. S. et al. Flatnet: Towards photorealistic scene reconstruction from lensless measurements. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 1934-1948 (2020). |
[46] |
Monakhova, K. et al. Learned reconstructions for practical mask-based lensless imaging. Optics Express 27, 28075-28090 (2019). doi: 10.1364/OE.27.028075 |
[47] |
Rivenson, Y., W u, Y. C. & Ozcan, A. Deep learning in holography and coherent imaging. Light: Science & Applications 8, 85 (2019). |
[48] |
Kuschmierz, R. et al. Ultra-thin 3D lensless fiber endoscopy using diffractive optical elements and deep neural networks. Light: Advanced Manufacturing 2, 30 (2021). |
[49] |
Borhani, N. et al. Learning to see through multimode fibers. Optica 5, 960-966 (2018). doi: 10.1364/OPTICA.5.000960 |
[50] |
Icha, J. et al. Phototoxicity in live fluorescence microscopy, and how to avoid it. BioEssays 39, 1700003 (2017). doi: 10.1002/bies.201700003 |
[51] |
Ali, J. H. Spectral optical properties of gray matter in human male brain tissue measured at 400-1100 nm. Optics 4, 1-10 (2023). |
[52] |
Luo, Y. et al. Computational imaging without a computer: seeing through random diffusers at the speed of light. eLight 2, 4 (2022). doi: 10.1186/s43593-022-00012-4 |
[53] |
Hughes, M. Fibre bundle simulator (2022). At URL https://www.mathworks.com/matlabcentral/fileexchange/75157-fibre-bundle-simulator. |
[54] |
Wetzstein, G. et al. Inference in artificial intelligence with deep optics and photonics. Nature 588, 39-47 (2020). doi: 10.1038/s41586-020-2973-6 |
[55] |
Wang, T. Y. et al. Image sensing with multilayer nonlinear optical neural networks. Nature Photonics 17, 408-415 (2023). |
[56] |
Yanny, K. et al. Deep learning for fast spatially varying deconvolution. Optica 9, 96-99 (2022). doi: 10.1364/OPTICA.442438 |
[57] |
Wang, H. D. et al. Deep learning enables cross-modality super-resolution in fluorescence microscopy. Nature Methods 16, 103-110 (2019). doi: 10.1038/s41592-018-0239-0 |
[58] |
Johnson, J., Alahi, A. & Fei-Fei, L. Perceptual losses for real-time style transfer and super-resolution. Proceedings of the 14th European Conference on Computer Vision. Amsterdam, The Netherlands: Springer, 2016, 694–711. |
[59] |
Barbastathis, G., Ozcan, A. & Situ, G. H. On the use of deep learning for computational imaging. Optica 6, 921-943 (2019). doi: 10.1364/OPTICA.6.000921 |
[60] |
Boominathan, V. et al. Recent advances in lensless imaging. Optica 9, 1-16 (2022). doi: 10.1364/OPTICA.431361 |
[61] |
Asif, M. S. et al. Flatcam: Thin, lensless cameras using coded aperture and computation. IEEE Transactions on Computational Imaging 3, 384-397 (2017). doi: 10.1109/TCI.2016.2593662 |
[62] |
DeWeert, M. J. & Farm, B. P. Lensless coded-aperture imaging with separable doubly-toeplitz masks. Optical Engineering 54, 023102 (2015). doi: 10.1117/1.OE.54.2.023102 |
[63] |
Singh, A. K. et al. Scatter-plate microscope for lensless microscopy with diffraction limited resolution. Scientific Reports 7, 10687 (2017). doi: 10.1038/s41598-017-10767-3 |
[64] |
Ludwig, S. et al. Scatter-plate microscopy with spatially coherent illumination and temporal scatter modulation. Optics Express 29, 4530-4546 (2021). doi: 10.1364/OE.412047 |
[65] |
Li, S. H. et al. Memory effect assisted imaging through multimode optical fibres. Nature Communications 12, 3751 (2021). doi: 10.1038/s41467-021-23729-1 |
[66] |
Kuo, G. et al. On-chip fluorescence microscopy with a random microlens diffuser. Optics Express 28, 8384-8399 (2020). doi: 10.1364/OE.382055 |
[67] |
Schmidt, J. D. Numerical Simulation of Optical Wave Propagation with Examples in MATLAB (Bellingham: SPIE, 2010). |
[68] |
Han, J.-H. & Kang, J. U. Effect of multimodal coupling in imaging micro-endoscopic fiber bundle on optical coherence tomography. Applied Physics B 106, 635-643 (2012). |
[69] |
Steelman, Z. A. et al. Comparison of imaging fiber bundles for coherence-domain imaging. Applied Optics 57, 1455-1462 (2018). doi: 10.1364/AO.57.001455 |
[70] |
Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for biomedical image segmentation. Proceedings of the 18th International Conference on Medical Image Computing and Computer–Assisted Intervention. Munich, Germany: Springer, 234–241. |
[71] |
Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. 3rd International Conference on Learning Representations. San Diego, CA, USA: ICLR, 2014. |