[1] |
Ayata, M. et al. High-speed plasmonic modulator in a single metal layer. Science 358, 630-632 (2017). doi: 10.1126/science.aan5953 |
[2] |
Almeida, V. R. et al. All-optical control of light on a silicon chip. Nature 431, 1081-1084 (2004). doi: 10.1038/nature02921 |
[3] |
Park, H.-G. et al. A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source. Nat. Photon. 2, 622-626 (2008). doi: 10.1038/nphoton.2008.180 |
[4] |
Monticone, F. & Alù, A. Metamaterial, plasmonic and nanophotonic devices. Rep. Prog. Phys. 80, 036401 (2017). doi: 10.1088/1361-6633/aa518f |
[5] |
Koenderink, A. F., Alù, A. & Polman, A. Nanophotonics: shrinking light-based technology. Science 348, 516-521 (2015). doi: 10.1126/science.1261243 |
[6] |
Novotny, L. & van Hulst, N. Antennas for light. Nat. Photon 5, 83-90 (2011). doi: 10.1038/nphoton.2010.237 |
[7] |
Giannini, V. et al. Plasmonicnanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev. 111, 3888-3912 (2011). doi: 10.1021/cr1002672 |
[8] |
Shao, L., Zhuo, X. L. & Wang, J. F. Advanced plasmonic materials for dynamic color display. Adv. Mater. 30, 1704338 (2018). doi: 10.1002/adma.201704338 |
[9] |
Jiang, N. N., Zhuo, X. L. & Wang, J. F. Active plasmonics: principles, structures, and applications. Chem. Rev. 118, 3054-3099 (2018). doi: 10.1021/acs.chemrev.7b00252 |
[10] |
Kosako, T., Kadoya, Y. & Hofmann, H. F. Directional control of light by a nano-optical Yagi-Uda antenna. Nat. Photon 4, 312-315 (2010). doi: 10.1038/nphoton.2010.34 |
[11] |
Curto, A. G. et al. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329, 930-933 (2010). doi: 10.1126/science.1191922 |
[12] |
Dregely, D. et al. 3D optical Yagi-Udananoantenna array. Nat. Commun. 2, 267 (2011). doi: 10.1038/ncomms1268 |
[13] |
Vercruysse, D. et al. Unidirectional side scattering of light by a single-element nanoantenna. Nano Lett. 13, 3843-3849 (2013). doi: 10.1021/nl401877w |
[14] |
Vercruysse, D. et al. Directional fluorescence emission by individual V-antennas explained by mode expansion. ACS Nano 8, 8232-8241 (2014). doi: 10.1021/nn502616k |
[15] |
Hancu, I. M. et al. Multipolar interference for directed light emission. Nano Lett. 14, 166-171 (2014). doi: 10.1021/nl403681g |
[16] |
Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780-1782 (2006). doi: 10.1126/science.1125907 |
[17] |
Chen, P. Y., Soric, J. & Alù, A. Invisibility and cloaking based on scattering cancellation. Adv. Mater. 24, OP281-OP304 (2012). |
[18] |
Yu, N. F. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139-150 (2014). doi: 10.1038/nmat3839 |
[19] |
Shegai, T. et al. A bimetallic nanoantenna for directional colour routing. Nat. Commun. 2, 481 (2011). doi: 10.1038/ncomms1490 |
[20] |
Shegai, T. et al. Directional scattering and hydrogen sensing by bimetallic Pd-Au nanoantennas. Nano Lett. 12, 2464-2469 (2012). doi: 10.1021/nl300558h |
[21] |
Guo, R. et al. PlasmonicFanonanoantennas for on-chip separation of wavelength-encoded optical signals. Nano Lett. 15, 3324-3328 (2015). doi: 10.1021/acs.nanolett.5b00560 |
[22] |
Aouani, H. et al. Plasmonic antennas for directional sorting of fluorescence emission. Nano Lett. 11, 2400-2406 (2011). doi: 10.1021/nl200772d |
[23] |
Yan, C., Yang, K. Y. & Martin, O. J. F. Fano-resonance-assisted metasurface for color routing. Light Sci. Appl. 6, e17017 (2017). doi: 10.1038/lsa.2017.17 |
[24] |
Artar, A., Yanik, A. A. & Altug, H. Directional double fanoresonances in plasmonichetero-oligomers. Nano Lett. 11, 3694-3700 (2011). doi: 10.1021/nl201677h |
[25] |
Knight, M. W. et al. Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle. Nano Lett. 9, 2188-2192 (2009). doi: 10.1021/nl900945q |
[26] |
Chen, H. J. et al. Effect of the dielectric properties of substrates on the scattering patterns of gold nanorods. ACS Nano 5, 4865-4877 (2011). doi: 10.1021/nn200951c |
[27] |
Ruan, Q. F. et al. Growth of monodisperse gold nanospheres with diameters from 20 nm to 220 nm and their core/satellite nanostructures. Adv. Opt. Mater. 2, 65-73 (2014). doi: 10.1002/adom.201300359 |
[28] |
Vigderman, L. & Zubarev, E. R. High-yield synthesis of gold nanorods with longitudinal SPR peak greater than 1200 nm using hydroquinone as a reducing agent. Chem. Mater. 25, 1450-1457 (2013). doi: 10.1021/cm303661d |
[29] |
Cui, X. M. et al. Circular gold nanodisks with synthetically tunable diameters and thicknesses. Adv. Funct. Mater. 28, 1705516 (2018). doi: 10.1002/adfm.201705516 |
[30] |
Zhuo, X. L. et al. Gold nanobipyramid-directed growth of length-variable silver nanorods with multipolar plasmon resonances. ACS Nano 9, 7523-7535 (2015). doi: 10.1021/acsnano.5b02622 |
[31] |
Zhu, X. Z. et al. Gold nanobipyramid-supported silver nanostructures with narrow plasmonlinewidths and improved chemical stability. Adv. Funct. Mater. 26, 341-352 (2016). doi: 10.1002/adfm.201503670 |
[32] |
Li, Q. et al. Production of monodisperse gold nanobipyramids with number percentages approaching 100% and evaluation of their plasmonic properties. Adv. Opt. Mater. 3, 801-812 (2015). doi: 10.1002/adom.201400505 |
[33] |
Olson, J. et al. Optical characterization of single plasmonic nanoparticles. Chem. Soc. Rev. 44, 40-57 (2015). doi: 10.1039/C4CS00131A |
[34] |
Wei, H. et al. Multipolar plasmon resonances in individual Ag nanorice. ACS Nano 4, 2649-2654 (2010). doi: 10.1021/nn1002419 |
[35] |
Mayer, M. et al. Controlled living nanowire growth: precise control over the morphology and optical properties of AgAuAg bimetallic nanowires. Nano Lett. 15, 5427-5437 (2015). doi: 10.1021/acs.nanolett.5b01833 |
[36] |
Li, T. et al. Three-dimensional orientation sensors by defocused imaging of gold nanorods through an ordinary wide-field microscope. ACS Nano 6, 1268-1277 (2012). doi: 10.1021/nn203979n |
[37] |
Xiao, L. H. et al. Three dimensional orientationalimaging of nanoparticles with darkfieldmicroscopy. Anal. Chem. 82, 5268-5274 (2010). doi: 10.1021/ac1006848 |
[38] |
Schubert, O. et al. Mapping the polarization pattern of plasmonmodes reveals nanoparticle symmetry. Nano Lett. 8, 2345-2350 (2008). doi: 10.1021/nl801179a |
[39] |
Chang, W. S. et al. Plasmonic nanorod absorbers as orientation sensors. Proc. Natl Acad. Sci. USA 107, 2781-2786 (2010). doi: 10.1073/pnas.0910127107 |
[40] |
Marchuk, K. & Fang, N. Three-dimensional orientation determination of stationary anisotropic nanoparticles with sub-degree precision under total internal reflection scattering microscopy. Nano Lett. 13, 5414-5419 (2013). doi: 10.1021/nl4029818 |
[41] |
Ming, T. et al. Experimental evidence of plasmophores: plasmon-directed polarized emission from gold nanorod-fluorophorehybrid nanostructures. Nano Lett. 11, 2296-2303 (2011). doi: 10.1021/nl200535y |
[42] |
Failla, A. V. et al. Orientationalimaging of subwavelength Au particles with higher order laser modes. Nano Lett. 6, 1374-1378 (2006). doi: 10.1021/nl0603404 |
[43] |
Liu, M. Z. et al. Excitation of dark plasmons in metal nanoparticles by a localized emitter. Phys. Rev. Lett. 102, 107401 (2009). doi: 10.1103/PhysRevLett.102.107401 |
[44] |
Gómez, D. E. et al. The dark side of plasmonics. Nano Lett. 13, 3722-3728 (2013). doi: 10.1021/nl401656e |
[45] |
Westcott, S. L. et al. Relative contributions to the plasmon line shape of metal nanoshells. Phys. Rev. B 66, 155431 (2002). doi: 10.1103/PhysRevB.66.155431 |
[46] |
Zhang, S. P. et al. Reduced linewidth multipolar plasmon resonances in metal nanorods and related applications. Nanoscale 5, 6985-6991 (2013). doi: 10.1039/c3nr01219k |
[47] |
Zhao, F. et al. Determination of surfactant molecular volume by atomic force microscopy. Colloid.J. 68, 784-787 (2006). doi: 10.1134/S1061933X06060172 |
[48] |
Balanis, C. A. Antenna Theory: Analysis and Design. 3rd edn. (John Wiley & Sons, New York, 2005). |
[49] |
Encina, E. R. & Coronado, E. A. Plasmonicnanoantennas: angular scattering properties of multipole resonances in noble metal nanorods. J. Phys. Chem C112, 9586-9594 (2008). |
[50] |
Taminiau, T. H., Stefani, F. D. & van Hulst, N. F. Optical nanorodantennas modeled as cavities for dipolar emitters: evolution of sub- and super-radiant modes. Nano Lett. 11, 1020-1024 (2011). doi: 10.1021/nl103828n |
[51] |
Verellen, N. et al. Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonicnanorods. Nano Lett. 14, 2322-2329 (2014). doi: 10.1021/nl404670x |
[52] |
Jiang, L. Y. et al. Accurate modeling of dark-field scattering spectra of plasmonic nanostructures. ACS Nano 9, 10039-10046 (2015). doi: 10.1021/acsnano.5b03622 |
[53] |
Curto, A. G. et al. Multipolar radiation of quantum emitters with nanowire optical antennas. Nat. Commun. 4, 1750 (2013). doi: 10.1038/ncomms2769 |
[54] |
Zhuo, X. L. et al. Broadside nanoantennas made of single silver nanorods. ACS Nano 12, 1720-1731 (2018). doi: 10.1021/acsnano.7b08423 |