[1] Wang, L. V. & Hu, S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335, 1458-1462 (2012). doi: 10.1126/science.1216210
[2] Danielli, A. et al. Label-free photoacoustic nanoscopy. J. Biomed. Opt. 19, 086006 (2014). doi: 10.1117/1.JBO.19.8.086006
[3] Yao, J. J., Wang, L. D., Li, C. Y., Zhang, C. & Wang, L. V. Photoimprint photoacoustic microscopy for three-dimensional label-free subdiffraction imaging. Phys. Rev. Lett. 112, 014302 (2014). doi: 10.1103/PhysRevLett.112.014302
[4] Lee, S. et al. Super-resolution visible photoactivated atomic force microscopy. Light Sci. Appl. 6, e17080 (2017). doi: 10.1038/lsa.2017.80
[5] Chaigne, T. et al. Super-resolution photoacoustic fluctuation imaging with multiple speckle illumination. Optica 3, 54-57 (2016). doi: 10.1364/OPTICA.3.000054
[6] Chaigne, T., Arnal, B., Vilov, S., Bossy, E. & Katz, O. Super-resolution photoacoustic imaging via flow-induced absorption fluctuations. Optica 4, 1397-1404 (2017). doi: 10.1364/OPTICA.4.001397
[7] Conkey, D. B. et al. Super-resolution photoacoustic imaging through a scattering wall. Nat. Commun. 6, 7902 (2015). doi: 10.1038/ncomms8902
[8] Deán-Ben, X. L. & Razansky, D. Localization optoacoustic tomography. Light Sci. Appl. 7, 18004 (2018). doi: 10.1038/lsa.2018.4