[1] Durnin, J., Miceli, J. J. Jr. & Eberly,J. H. Diffraction-free beams. Physical Review Letters 58, 1499-1501 (1987).
[2] Liang, Y. S. et al. Simultaneous optical trapping and imaging in the axial plane: a review of current progress. Reports on Progress in Physics 83, 032401 (2020). doi: 10.1088/1361-6633/ab7175
[3] Yang, Y. J. et al. Optical trapping with structured light: a review. Advanced Photonics 3, 034001 (2021).
[4] Yi, L. Y., Sun, L. Q. & Ding, W. W. Multifocal spectral-domain optical coherence tomography based on Bessel beam for extended imaging depth. Journal of Biomedical Optics 22, 106016 (2017).
[5] Vairagi, K. et al. Common-path optical coherence tomography using the Bessel beam from negative axicon optical fiber tip. IEEE Journal of Selected Topics in Quantum Electronics 25, 7100606 (2019).
[6] Yu, W. T. et al. Super-resolution deep imaging with hollow Bessel beam STED microscopy. Laser & Photonics Reviews 10, 147-152 (2016).
[7] Amako, J. et al. Laser-based microprocesses using diffraction-free beams generated by diffractive axicons. Proceedings of SPIE 5713, Photon Processing in Microelectronics and Photonics IV. San Jose, California, United States: SPIE, 2005, 497-507.
[8] Li, X. W. et al. Creating a three-dimensional surface with antireflective properties by using femtosecond-laser Bessel-beam-assisted thermal oxidation. Optics Letters 45, 2989-2992 (2020). doi: 10.1364/OL.394998
[9] Skora, J. L. et al. High-fidelity glass micro-axicons fabricated by laser-assisted wet etching. Optics Express 30, 3749-3759 (2022). doi: 10.1364/OE.446740
[10] Ji, S. Y. et al. Dimension-controllable microtube arrays by dynamic holographic processing as 3D yeast culture scaffolds for asymmetrical growth regulation. Small 13, 1701190 (2017). doi: 10.1002/smll.201701190
[11] Chen, W. T. et al. Generation of wavelength-independent subwavelength Bessel beams using metasurfaces. Light:Science & Applications 6, e16259 (2017).
[12] Xiong, Z., Kunwar, P. & Soman, P. Hydrogel‐based diffractive optical elements (hDOEs) using rapid digital photopatterning. Advanced Optical Materials 9, 2001217 (2021). doi: 10.1002/adom.202001217
[13] Gissibl, T., Schmid, M. & Giessen, H. Spatial beam intensity shaping using phase masks on single-mode optical fibers fabricated by femtosecond direct laser writing. Optica 3, 448-451 (2016). doi: 10.1364/OPTICA.3.000448
[14] Wang, P., Mohammad, N. & Menon, R. Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing. Scientific Reports 6, 21545 (2016). doi: 10.1038/srep21545
[15] Kawata, S. et al. Finer features for functional microdevices. Nature 412, 697-698 (2001). doi: 10.1038/35089130
[16] Yang, L. et al. Multi-material multi-photon 3D laser micro- and nanoprinting. Light:Advanced Manufacturing 2, 296-312 (2021).
[17] Yan, L. Y. et al. Rapid fabrication of continuous surface fresnel microlens array by femtosecond laser focal field engineering. Micromachines 11, 112 (2020). doi: 10.3390/mi11020112
[18] Wang, H. et al. Toward near-perfect diffractive optical elements via nanoscale 3D printing. ACS Nano 14, 10452-10461 (2020). doi: 10.1021/acsnano.0c04313
[19] Hu, Z. Y. et al. Long focusing range and self-healing Bessel vortex beam generator. Optics Letters 45, 2580-2583 (2020). doi: 10.1364/OL.391232
[20] Wang, J. et al. Generation of Bessel beams via femtosecond direct laser writing 3D phase plates. Optics Letters 47, 5766-5769 (2022). doi: 10.1364/OL.473388
[21] Balena, A. et al. Recent advances on high‐speed and holographic two‐photon direct laser writing. Advanced Functional Materials 33, 2211773 (2023). doi: 10.1002/adfm.202211773
[22] Yang, L. et al. Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator. Optics and Lasers in Engineering 70, 26-32 (2015).
[23] Bhuian, B. et al. Pattern generation using axicon lens beam shaping in two-photon polymerisation. Applied Surface Science 254, 841-844 (2007). doi: 10.1016/j.apsusc.2007.08.071
[24] Mishra, Y. N. et al. In-depth fiber optic two-photon polymerization and its applications in micromanipulation. Proceedings of SPIE 7927, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics IV. San Francisco, California, United States: IEEE, 2011, 792718.
[25] Yu, X. M., Zhang, M. & Lei, S. T. Multiphoton polymerization using femtosecond bessel beam for layerless three-dimensional printing. Journal of Micro and Nano-Manufacturing 6, 010901 (2018). doi: 10.1115/1.4038453
[26] Li, W. L. et al. Stereolithography apparatus and digital light processing-based 3D bioprinting for tissue fabrication. iScience 26, 106039 (2023). doi: 10.1016/j.isci.2023.106039
[27] Kunwar, P. et al. Hybrid laser printing of 3D, multiscale, multimaterial hydrogel structures. Advanced Optical Materials 7, 1900656 (2019). doi: 10.1002/adom.201900656
[28] Trautmann, A. et al. Scaffolds in a shell–a new approach combining one-photon and two-photon polymerization. Optics Express 26, 29659-29668 (2018). doi: 10.1364/OE.26.029659
[29] Tan, M. Y. et al. Cross-scale and cross-precision structures/systems fabricated by high-efficiency and low-cost hybrid 3D printing technology. Additive Manufacturing 59, 103169 (2022). doi: 10.1016/j.addma.2022.103169
[30] Courvoisier, F. et al. Surface nanoprocessing with nondiffracting femtosecond Bessel beams. Optics Letters 34, 3163-3165 (2009). doi: 10.1364/OL.34.003163
[31] Pan, D. et al. Efficient fabrication of a high-aspect-ratio AFM tip by one-step exposure of a long focal depth holographic femtosecond axilens beam. Optics Letters 45, 897-900 (2020). doi: 10.1364/OL.384249
[32] Keskinbora, K. et al. Single-step 3D nanofabrication of kinoform optics via gray-scale focused ion beam lithography for efficient X-ray focusing. Advanced Optical Materials 3, 792-800 (2015). doi: 10.1002/adom.201400411
[33] Veldkamp, W. Binary optics: an emerging diffractive optics technology. Optics News 12, 15 (1986).
[34] Kizuka, Y., Yamauchi, M. & Matsuoka, Y. Characteristics of a laser beam spot focused by a binary diffractive axicon. Optical Engineering 47, 053401 (2008). doi: 10.1117/1.2919739
[35] Davis, J. A., Carcole, E. & Cottrell, D. M. Intensity and phase measurements of nondiffracting beams generated with a magneto-optic spatial light modulator. Applied Optics 35, 593-598 (1996). doi: 10.1364/AO.35.000593
[36] Niggl, L., Lanzl, T. & Maier, M. Properties of Bessel beams generated by periodic gratings of circular symmetry. Journal of the Optical Society of America A 14, 27-33 (1997).
[37] Banerji, S. et al. Imaging with flat optics: metalenses or diffractive lenses?. Optica 6, 805-810 (2019).
[38] Teh, W. H. et al. Effect of low numerical-aperture femtosecond two-photon absorption on (SU-8) resist for ultrahigh-aspect-ratio microstereolithography. Journal of Applied Physics 97, 054907 (2005). doi: 10.1063/1.1856214
[39] Zhang, Y. et al. Terahertz spoof surface-plasmon-polariton subwavelength waveguide. Photonics Research 6, 18-23 (2018). doi: 10.1364/PRJ.6.000018
[40] Yuan, M. R. et al. Ultra-compact terahertz plasmonic wavelength diplexer. Applied Optics 59, 10451-10456 (2020). doi: 10.1364/AO.409828
[41] Sun, K. et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass. Science 375, 307-310 (2022). doi: 10.1126/science.abj2691
[42] Sun, K. et al. Pure blue perovskites nanocrystals in glass: ultrafast laser direct writing and bandgap tuning. Laser & Photonics Reviews 17, 2200902 (2023).