[1] Vahala, K. J. Optical microcavities. Nature 424, 839-846 (2003). doi: 10.1038/nature01939
[2] Aoki, T. et al. Observation of strong coupling between one atom and a monolithic microresonator. Nature 443, 671-674 (2006). doi: 10.1038/nature05147
[3] Guggenheim, J. A. et al. Ultrasensitive plano-concave optical microresonators for ultrasound sensing. Nat. Photonics 11, 714-719 (2017). doi: 10.1038/s41566-017-0027-x
[4] Feng, S. et al. Silicon photonics: from a microresonator perspective. Laser Photonics Rev. 6, 145-177 (2012). doi: 10.1002/lpor.201100020
[5] Liu, J. Q. et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun. 12, 2236 (2021). doi: 10.1038/s41467-021-21973-z
[6] Liu, J. Q. et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat. Photonics 14, 486-491 (2020). doi: 10.1038/s41566-020-0617-x
[7] Shen, B. Q. et al. Integrated turnkey soliton microcombs. Nature 582, 365-369 (2020). doi: 10.1038/s41586-020-2358-x
[8] Dietrich, C. P. et al. GaAs integrated quantum photonics: towards compact and multi-functional quantum photonic integrated circuits. Laser Photonics Rev. 10, 870-894 (2016). doi: 10.1002/lpor.201500321
[9] Lin, J. T. et al. Advances in on-chip photonic devices based on lithium niobate on insulator. Photonics Res. 8, 1910-1936 (2020). doi: 10.1364/PRJ.395305
[10] Jia, Y. C., Wang, L. & Chen, F. Ion-cut lithium niobate on insulator technology: recent advances and perspectives. Appl. Phys. Rev. 8, 011307 (2021). doi: 10.1063/5.0037771
[11] Zhu, D. et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics 13, 242-352 (2021). doi: 10.1364/AOP.411024
[12] Wang, S. C. et al. 4H-SiC: a new nonlinear material for midinfrared lasers. Laser Photonics Rev. 7, 831-838 (2013). doi: 10.1002/lpor.201300068
[13] Francis, A. M. et al. Towards standard component parts in silicon carbide CMOS. in Proc. 2015 IEEE Aerospace Conference. (IEEE, 2015).
[14] Adair, R., Chase, L. L. & Payne, S. A. Nonlinear refractive index of optical crystals. Phys. Rev. B 39, 3337-3350 (1989). doi: 10.1103/PhysRevB.39.3337
[15] Fan, T. Y. et al. Racetrack microresonator based electro-optic phase shifters on a 3C silicon-carbide-on-insulator platform. Opt. Lett. 46, 2135-2138 (2021). doi: 10.1364/OL.422560
[16] Koehl, W. F. et al. Room temperature coherent control of defect spin qubits in silicon carbide. Nature 479, 84-87 (2011). doi: 10.1038/nature10562
[17] Lukin, D. M. et al. 4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics. Nat. Photonics 14, 330-334 (2020). doi: 10.1038/s41566-019-0556-6
[18] Lukin, D. M., Guidry, M. A. & Vučković, J. Integrated quantum photonics with silicon carbide: challenges and prospects. PRX Quantum 1, 020102 (2020). doi: 10.1103/PRXQuantum.1.020102
[19] Yamada, S. et al. Silicon carbide-based photonic crystal nanocavities for ultra-broadband operation from infrared to visible wavelengths. Appl. Phys. Lett. 99, 201102 (2011). doi: 10.1063/1.3647979
[20] Lu, X. Y. et al. Silicon carbide microdisk resonator. Opt. Lett. 38, 1304-1306 (2013). doi: 10.1364/OL.38.001304
[21] Lu, X. Y. et al. High Q silicon carbide microdisk resonator. Appl. Phys. Lett. 104, 181103 (2014). doi: 10.1063/1.4875707
[22] Powell, K. et al. High-Q suspended optical resonators in 3C silicon carbide obtained by thermal annealing. Opt. Express 28, 4938-4949 (2020). doi: 10.1364/OE.381601
[23] Guidry, M. A. et al. Optical parametric oscillation in silicon carbide nanophotonics. Optica 7, 1139-1142 (2020). doi: 10.1364/OPTICA.394138
[24] Zheng, Y. et al. High-quality factor, high-confinement microring resonators in 4H-silicon carbide-on-insulator. Opt. Express 27, 13053-13060 (2019). doi: 10.1364/OE.27.013053
[25] Song, B. S. et al. Ultrahigh-Q photonic crystal nanocavities based on 4H silicon carbide. Optica 6, 991-995 (2019). doi: 10.1364/OPTICA.6.000991
[26] Yi, A. L. et al. Wafer-scale 4H-silicon carbide-on-insulator (4H-SiCOI) platform for nonlinear integrated optical devices. Optical Mater. 107, 109990 (2020). doi: 10.1016/j.optmat.2020.109990
[27] Fan, T. R. et al. High-quality integrated microdisk resonators in the visible-to-near-infrared wavelength range on a 3C-silicon carbide-on-insulator platform. Opt. Lett. 45, 153-156 (2020). doi: 10.1364/OL.45.000153
[28] Wettlin, T. et al. Comparison of PAM formats for 200 Gb/s short reach transmission systems. in Proc. Optical Fiber Communication Conference 2020. (Optical Society of America, 2020).
[29] Wu, R. B. et al. Lithium niobate micro-disk resonators of quality factors above 107. Opt. Lett. 43, 4116-4119 (2018). doi: 10.1364/OL.43.004116
[30] Fang, Z. W. et al. Real-time electrical tuning of an optical spring on a monolithically integrated ultrahigh Q lithium nibote microresonator. Opt. Lett. 44, 1214-1217 (2019). doi: 10.1364/OL.44.001214
[31] Okawachi, Y. et al. Competition between Raman and Kerr effects in microresonator comb generation. Opt. Lett. 42, 2786-2789 (2017). doi: 10.1364/OL.42.002786
[32] Savchenkov, A. A. et al. Enhancement of photorefraction in whispering gallery mode resonators. Phys. Rev. B 74, 245119 (2006). doi: 10.1103/PhysRevB.74.245119
[33] Sun, X. et al. Nonlinear optical oscillation dynamics in high-Q lithium niobate microresonators. Opt. Express 25, 13504-13516 (2017). doi: 10.1364/OE.25.013504
[34] Jiang, H. W. et al. Fast response of photorefraction in lithium niobate microresonators. Opt. Lett. 42, 3267-3270 (2017). doi: 10.1364/OL.42.003267
[35] Boyd, R. W. Nonlinear Optics (Academic Press, 1992).
[36] Lin, J. T. et al. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator. Phys. Rev. Lett. 122, 173903 (2019). doi: 10.1103/PhysRevLett.122.173903
[37] Levy, J. S. et al. Harmonic generation in silicon nitride ring resonators. Opt. Express 19, 11415-11421 (2011). doi: 10.1364/OE.19.011415
[38] Bi, Z. F. et al. High-efficiency second-harmonic generation in doubly-resonant χ(2) microring resonators. Opt. Express 20, 7526-7543 (2012). doi: 10.1364/OE.20.007526
[39] Chikvaidze, G. et al. Investigation of silicon carbide polytypes by Raman spectroscopy. Latvian J. Phys. Tech. Sci. 51, 51-57 (2014). doi: 10.2478/lpts-2014-0019
[40] Rong, H. S. et al. A cascaded silicon Raman laser. Nat. Photonics 2, 170-174 (2008). doi: 10.1038/nphoton.2008.4
[41] Min, B., Kippenberg, T. J. & Vahala, K. J. Compact, fiber-compatible, cascaded Raman laser. Opt. Lett. 28, 1507-1509 (2003). doi: 10.1364/OL.28.001507
[42] Del'Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214-1217 (2007). doi: 10.1038/nature06401
[43] Fujii, S. & Tanabe, T. Dispersion engineering and measurement of whispering gallery mode microresonator for Kerr frequency comb generation. Nanophotonics 9, 1087-1104 (2020). doi: 10.1515/nanoph-2019-0497
[44] Pu, M. H. et al. Efficient frequency comb generation in AlGaAs-on-insulator. Optica 3, 823-826 (2016). doi: 10.1364/OPTICA.3.000823
[45] Matsko, A. B. et al. Optical hyperparametric oscillations in a whispering-gallery-mode resonator: threshold and phase diffusion. Phys. Rev. A 71, 033804 (2005). doi: 10.1103/PhysRevA.71.033804
[46] Min, B., Yang, L. & Vahala, K. Controlled transition between parametric and Raman oscillations in ultrahigh-Q silica toroidal microcavities. Appl. Phys. Lett. 87, 181109 (2005). doi: 10.1063/1.2120921
[47] Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photonics 8, 145-152 (2014). doi: 10.1038/nphoton.2013.343
[48] Yi, X. et al. Imaging soliton dynamics in optical microcavities. Nat. Commun. 9, 3565 (2018). doi: 10.1038/s41467-018-06031-5