[1] Klitzing, K. V., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980). doi: 10.1103/PhysRevLett.45.494
[2] Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010). doi: 10.1103/RevModPhys.82.3045
[3] Qi, X. L. & Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011). doi: 10.1103/RevModPhys.83.1057
[4] Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photonics 8, 821–829 (2014). doi: 10.1038/nphoton.2014.248
[5] Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019). doi: 10.1103/RevModPhys.91.015006
[6] Atala, M. et al. Direct measurement of the Zak phase in topological Bloch bands. Nat. Phys. 9, 795–800 (2013). doi: 10.1038/nphys2790
[7] Jotzu, G. et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014). doi: 10.1038/nature13915
[8] Zhang, D. W. et al. Topological quantum matter with cold atoms. Adv. Phys. 67, 253–402 (2018). doi: 10.1080/00018732.2019.1594094
[9] Lu, L. et al. Experimental observation of Weyl points. Science 349, 622–624 (2015). doi: 10.1126/science.aaa9273
[10] Zhang, X. et al. Dimensional hierarchy of higher-order topology in three-dimensional sonic crystals. Nat. Comm. 10, 1–10 (2019). doi: 10.1038/s41467-018-07882-8
[11] Xie, B. Y. et al. Photonics meets topology. Opt. Express 26, 24531–24550 (2018). doi: 10.1364/OE.26.024531
[12] Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013). doi: 10.1038/nature12066
[13] Wu, L. H. & Hu, X. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett. 114, 223901 (2015). doi: 10.1103/PhysRevLett.114.223901
[14] Wang, Z. et al. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009). doi: 10.1038/nature08293
[15] Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Quantized electric multipole insulators. Science 357, 61–66 (2017). doi: 10.1126/science.aah6442
[16] Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Electric multipole moments, topological multipole moment pumping, and chiral hinge states in crystalline insulators. Phys. Rev. B 96, 245115 (2017). doi: 10.1103/PhysRevB.96.245115
[17] Song, Z. D., Fnag, Z. & Fang, C. (d-2)-dimensional edge states of rotation symmetry protected topological states. Phys. Rev. Lett. 119, 246402 (2017). doi: 10.1103/PhysRevLett.119.246402
[18] Serra-Garcia, M. et al. Observation of a phononic quadrupole topological insulator. Nature 555, 342–345 (2018). doi: 10.1038/nature25156
[19] Peterson, C. W. et al. A quantized microwave quadrupole insulator with topologically protected corner states. Nature 555, 346–350 (2018). doi: 10.1038/nature25777
[20] Imhof, S. et al. Topolectrical-circuit realization of topological corner modes. Nat. Phys. 14, 925–929 (2018). doi: 10.1038/s41567-018-0246-1
[21] Schindler, F. et al. Higher-order topological insulators. Sci. Adv. 4, eaat0346 (2018). doi: 10.1126/sciadv.aat0346
[22] Ezawa, M. Higher-order topological insulators and semimetals on the breathing Kagome and pyrochlore lattices. Phys. Rev. Lett. 120, 026801 (2018). doi: 10.1103/PhysRevLett.120.026801
[23] Xie, B. Y. et al. Second-order photonic topological insulator with corner states. Phys. Rev. B 98, 205147 (2018). doi: 10.1103/PhysRevB.98.205147
[24] Noh, J. et al. Topological protection of photonic mid-gap defect modes. Nat. Photonics 12, 408–415 (2018). doi: 10.1038/s41566-018-0179-3
[25] Zhang, X. J. et al. Second-order topology and multidimensional topological transitions in sonic crystals. Nat. Phys. 15, 582–588 (2019). doi: 10.1038/s41567-019-0472-1
[26] Xue, H. R. et al. Acoustic higher-order topological insulator on a Kagome lattice. Nat. Mater. 18, 108–112 (2019). doi: 10.1038/s41563-018-0251-x
[27] Ni, X. et al. Observation of higher-order topological acoustic states protected by generalized chiral symmetry. Nat. Mater. 18, 113–120 (2019). doi: 10.1038/s41563-018-0252-9
[28] Zhang, X. et al. Symmetry-protected hierarchy of anomalous multipole topological band gaps in nonsymmorphic metacrystals. Nat. Comm. 11, 1–9 (2020).
[29] Chen, X. D. et al. Direct observation of corner states in second-order topological photonic crystal slabs. Phys. Rev. Lett. 122, 233902 (2019). doi: 10.1103/PhysRevLett.122.233902
[30] Xie, B. Y. et al. Visualization of higher-order topological insulating phases in two-dimensional dielectric photonic crystals. Phys. Rev. Lett. 122, 233903 (2019). doi: 10.1103/PhysRevLett.122.233903
[31] Mittal, S. et al. Photonic quadrupole topological phases. Nat. Photonics 13, 692–696 (2019). doi: 10.1038/s41566-019-0452-0
[32] EI Hassan, A. et al. Corner states of light in photonic waveguides. Nat. Photonics 13, 697–700 (2019). doi: 10.1038/s41566-019-0519-y
[33] Chiu, C. K. et al. Classification of topological quantum matter with symmetries. Rev. Mod. Phys. 88, 035005 (2016). doi: 10.1103/RevModPhys.88.035005
[34] Kunst, F. K., van Miert, G. & Bergholtz, E. J. Boundaries of boundaries: a systematic approach to lattice models with solvable boundary states of arbitrary codimension. Phys. Rev. B 99, 085426 (2019). doi: 10.1103/PhysRevB.99.085426
[35] Hsu, C. W. et al. Bound states in the continuum. Nat. Rev. Mater. 1, 16048 (2016). doi: 10.1038/natrevmats.2016.48
[36] Dreisow, F. et al. Adiabatic transfer of light via a continuum in optical waveguides. Opt. Lett. 34, 2405–2407 (2009). doi: 10.1364/OL.34.002405
[37] Plotnik, Y. et al. Experimental observation of optical bound states in the continuum. Phys. Rev. Lett. 107, 183901 (2011). doi: 10.1103/PhysRevLett.107.183901
[38] Ulrich, R. In Symposium on Optical and Acoustical Microelectronics (ed Fox, J. ) 359 (New York, 1975).
[39] Lee, J. et al. Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs. Phys. Rev. Lett. 109, 067401 (2012). doi: 10.1103/PhysRevLett.109.067401
[40] Weimann, S. et al. Compact surface fano states embedded in the continuum of waveguide arrays. Phys. Rev. Lett. 111, 240403 (2013). doi: 10.1103/PhysRevLett.111.240403
[41] Hsu, C. W. et al. Observation of trapped light within the radiation continuum. Nature 499, 188–191 (2013). doi: 10.1038/nature12289
[42] Corrielli, G. et al. Observation of surface states with algebraic localization. Phys. Rev. Lett. 111, 220403 (2013). doi: 10.1103/PhysRevLett.111.220403
[43] Regensburger, A. et al. Observation of defect states in PT-symmetric optical lattices. Phys. Rev. Lett. 110, 223902 (2013). doi: 10.1103/PhysRevLett.110.223902
[44] Sato, Y. et al. Strong coupling between distant photonic nanocavities and its dynamic control. Nat. Photonics 6, 56–61 (2012). doi: 10.1038/nphoton.2011.286
[45] Zheng, H. X. & Baranger, H. U. Persistent quantum beats and long-distance entanglement from waveguide-mediated interactions. Phys. Rev. Lett. 110, 113601 (2013). doi: 10.1103/PhysRevLett.110.113601
[46] Kodigala, A. et al. Lasing action from photonic bound states in continuum. Nature 541, 196–199 (2017). doi: 10.1038/nature20799
[47] Yu, Z. J. et al. Photonic integrated circuits with bound states in the continuum. Optica 6, 1342–1348 (2019). doi: 10.1364/OPTICA.6.001342
[48] Huang, C. et al. Ultrafast control of vortex microlasers. Science 367, 1018–1021 (2020). doi: 10.1126/science.aba4597
[49] Yu, Z. J. & Sun, X. K. Acousto-optic modulation of photonic bound state in the continuum. Light. : Sci. Appl. 9, 1 (2020). doi: 10.1038/s41377-019-0231-1
[50] Zhen, B. et al. Topological nature of optical bound states in the continuum. Phys. Rev. Lett. 113, 257401 (2014). doi: 10.1103/PhysRevLett.113.257401
[51] Chen, Z. G. et al. Corner states in a second-order acoustic topological insulator as bound states in the continuum. Phys. Rev. B 100, 075120 (2019). doi: 10.1103/PhysRevB.100.075120
[52] Benalcazar, W. A. & Cerjan, A. Bound states in the continuum of higher-order topological insulators. Phys. Rev. B 101, 161116 (2020). doi: 10.1103/PhysRevB.101.161116
[53] Cerjan, A. et al. Observation of a higher-order topological bound state in the continuum. Phys. Rev. Lett. 125, 213901 (2020). doi: 10.1103/PhysRevLett.125.213901
[54] Keil, R. et al. Direct measurement of second-order coupling in a waveguide lattice. Appl. Phys. Lett. 107, 241104 (2015). doi: 10.1063/1.4937807
[55] Meier, E. J., An, F. A. & Gadway, B. Observation of the topological soliton state in the Su-Schrieffer-Heeger model. Nat. Commun. 7, 13986 (2016). doi: 10.1038/ncomms13986
[56] Blanco-Redondo, A. et al. Topological optical waveguiding in silicon and the transition between topological and trivial defect states. Phys. Rev. Lett. 116, 163901 (2016). doi: 10.1103/PhysRevLett.116.163901
[57] Wang, Y. et al. Direct observation of topology from single-photon dynamics. Phys. Rev. Lett. 122, 193903 (2019). doi: 10.1103/PhysRevLett.122.193903