[1] Zeng, H. L. & Cui, X. D. An optical spectroscopic study on two-dimensional group-Ⅵ transition metal dichalcogenides. Chem. Soc. Rev. 44, 2629-2642 (2015). doi: 10.1039/C4CS00265B
[2] Yu, H. Y. et al. Valley excitons in two-dimensional semiconductors. Natl Sci. Rev. 2, 57-70 (2015). doi: 10.1093/nsr/nwu078
[3] Xu, X. D. et al. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343-350 (2014). doi: 10.1038/nphys2942
[4] Mak, K. F., Xiao, D. & Shan, J. Light-valley interactions in 2D semiconductors. Nat. Photonics 12, 451-460 (2018). doi: 10.1038/s41566-018-0204-6
[5] Liu, Y. P. et al. Valleytronics in transition metal dichalcogenides materials. Nano Res. 12, 2695-2711 (2019). doi: 10.1007/s12274-019-2497-2
[6] Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419-425 (2013). doi: 10.1038/nature12385
[7] Novoselov, K. S. et al. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016). doi: 10.1126/science.aac9439
[8] Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016). doi: 10.1038/natrevmats.2016.42
[9] Gong, C. et al. Band alignment of two-dimensional transition metal dichalcogenides: application in tunnel field effect transistors. Appl. Phys. Lett. 103, 053513 (2013). doi: 10.1063/1.4817409
[10] Kang, J. et al. Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 102, 012111 (2013). doi: 10.1063/1.4774090
[11] Guo, Y. Z. & Robertson, J. Band engineering in transition metal dichalcogenides: stacked versus lateral heterostructures. Appl. Phys. Lett. 108, 233104 (2016). doi: 10.1063/1.4953169
[12] Özçelik, V. O. et al. Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching. Phys. Rev. B 94, 035125 (2016). doi: 10.1103/PhysRevB.94.035125
[13] Zhang, C. X. et al. Systematic study of electronic structure and band alignment of monolayer transition metal dichalcogenides in Van der Waals heterostructures. 2D Mater. 4, 015026 (2017). doi: 10.1088/2053-1583/4/1/015026
[14] Xu, K. et al. The role of Anderson's rule in determining electronic, optical and transport properties of transition metal dichalcogenide heterostructures. Phys. Chem. Chem. Phys. 20, 30351-30364 (2018). doi: 10.1039/C8CP05522J
[15] Chiu, M. H. et al. Determination of band alignment in the single-layer MoS2/WSe2 heterojunction. Nat. Commun. 6, 7666 (2015). doi: 10.1038/ncomms8666
[16] Hill, H. M. et al. Band alignment in MoS2/WS2 transition metal dichalcogenide heterostructures probed by scanning tunneling microscopy and spectroscopy. Nano Lett. 16, 4831-4837 (2016). doi: 10.1021/acs.nanolett.6b01007
[17] Wilson, N. R. et al. Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Sci. Adv. 3, e1601832 (2017). doi: 10.1126/sciadv.1601832
[18] Zhang, C. D. et al. Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv. 3, e1601459 (2017). doi: 10.1126/sciadv.1601459
[19] Quan, C. J. et al. Band alignment of MoTe2/MoS2 nanocomposite films for enhanced nonlinear optical performance. Adv. Mater. Interfaces 6, 1801733 (2019). doi: 10.1002/admi.201801733
[20] Fang, H. et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc. Natl Acad. Sci. USA 111, 6198-6202 (2014). doi: 10.1073/pnas.1405435111
[21] Chiu, M. H. et al. Spectroscopic signatures for interlayer coupling in MoS2-WSe2 van der Waals stacking. ACS Nano 8, 9649-9656 (2014). doi: 10.1021/nn504229z
[22] Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nat. Commun. 6, 6242 (2015). doi: 10.1038/ncomms7242
[23] Miller, B. et al. Long-lived direct and indirect interlayer excitons in van der Waals heterostructures. Nano Lett. 17, 5229-5237 (2017). doi: 10.1021/acs.nanolett.7b01304
[24] Baranowski, M. et al. Probing the interlayer exciton physics in a MoS2/MoSe2/MoS2 van der Waals heterostructure. Nano Lett. 17, 6360-6365 (2017). doi: 10.1021/acs.nanolett.7b03184
[25] Nagler, P. et al. Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures. Nat. Commun. 8, 1551 (2017). doi: 10.1038/s41467-017-01748-1
[26] Kiemle, J. et al. Control of the orbital character of indirect excitons in MoS2/WS2 heterobilayers. Phys. Rev. B 101, 121404(R) (2020). doi: 10.1103/PhysRevB.101.121404
[27] Jiang, C. Y. et al. Microsecond dark-exciton valley polarization memory in two-dimensional heterostructures. Nat. Commun. 9, 753 (2018). doi: 10.1038/s41467-018-03174-3
[28] Nagler, P. et al. Interlayer exciton dynamics in a dichalcogenide monolayer heterostructure. 2D Mater. 4, 025112 (2017). doi: 10.1088/2053-1583/aa7352
[29] Unuchek, D. et al. Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature 560, 340-344 (2018). doi: 10.1038/s41586-018-0357-y
[30] Jauregui, L. A. et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science 366, 870-875 (2019). doi: 10.1126/science.aaw4194
[31] Fogler, M. M., Butov, L. V. & Novoselov, K. S. High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nat. Commun. 5, 4555 (2014). doi: 10.1038/ncomms5555
[32] Wang, Z. F. et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 574, 76-80 (2019). doi: 10.1038/s41586-019-1591-7
[33] Rivera, P. et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351, 688-691 (2016). doi: 10.1126/science.aac7820
[34] Unuchek, D. et al. Valley-polarized exciton currents in a van der Waals heterostructure. Nat. Nanotechnol. 14, 1104-1109 (2019). doi: 10.1038/s41565-019-0559-y
[35] Rivera, P. et al. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 13, 1004-1015 (2018). doi: 10.1038/s41565-018-0193-0
[36] Yu, H. Y. et al. Moiré excitons: from programmable quantum emitter arrays to spin-orbit-coupled artificial lattices. Sci. Adv. 3, e1701696 (2017). doi: 10.1126/sciadv.1701696
[37] Komsa, H. P. & Krasheninnikov, A. V. Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles. Phys. Rev. B 88, 085318 (2013). doi: 10.1103/PhysRevB.88.085318
[38] Kang, J. et al. Electronic structural moiré pattern effects on MoS2/MoSe2 2D heterostructures. Nano Lett. 13, 5485-5490 (2013). doi: 10.1021/nl4030648
[39] Amin, B., Singh, N. & Schwingenschlogl, U. Heterostructures of transition metal dichalcogenides. Phys. Rev. B 92, 075439 (2015). doi: 10.1103/PhysRevB.92.075439
[40] Wang, Y. et al. Interlayer coupling in commensurate and incommensurate bilayer structures of transition-metal dichalcogenides. Phys. Rev. B 95, 115429 (2017). doi: 10.1103/PhysRevB.95.115429
[41] Ruiz-Tijerina, D. A. & Fal'ko, V. I. Interlayer hybridization and moire superlattice minibands for electrons and excitons in heterobilayers of transition-metal dichalcogenides. Phys. Rev. B 99, 125424 (2019). doi: 10.1103/PhysRevB.99.125424
[42] Heo, H. et al. Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks. Nat. Commun. 6, 7372 (2015). doi: 10.1038/ncomms8372
[43] Okada, M. et al. Direct and indirect interlayer excitons in a van der Waals heterostructure of hBN/WS2/MoS2/hBN. ACS Nano 12, 2498-2505 (2018). doi: 10.1021/acsnano.7b08253
[44] Kunstmann, J. et al. Momentum-space indirect interlayer excitons in transition-metal dichalcogenide van der Waals heterostructures. Nat. Phys. 14, 801-805 (2018). doi: 10.1038/s41567-018-0123-y
[45] Hanbicki, A. T. et al. Double indirect interlayer exciton in a MoSe2/WSe2 van der Waals heterostructure. ACS Nano 12, 4719-4726 (2018). doi: 10.1021/acsnano.8b01369
[46] Merkl, P. et al. Twist-tailoring Coulomb correlations in van der Waals homobilayers. Nat. Commun. 11, 2167 (2020). doi: 10.1038/s41467-020-16069-z
[47] Brem, S. et al. Hybridized intervalley moire excitons and flat bands in twisted WSe2 bilayers. Nanoscale 12, 11088-11094 (2020). doi: 10.1039/D0NR02160A
[48] Liu, G. B. et al. Electronic structures and theoretical modelling of two-dimensional group-ⅥB transition metal dichalcogenides. Chem. Soc. Rev. 44, 2643-2663 (2015). doi: 10.1039/C4CS00301B
[49] Tongay, S. et al. Tuning Interlayer coupling in large-area heterostructures with CVD-Grown MoS2 and WS2 monolayers. Nano Lett. 14, 3185-3190 (2014). doi: 10.1021/nl500515q
[50] Liu, K. H. et al. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 5, 4966 (2014). doi: 10.1038/ncomms5966
[51] van der Zande, A. M. et al. Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. Nano Lett. 14, 3869-3875 (2014). doi: 10.1021/nl501077m
[52] Hong, X. P. et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9, 682-686 (2014). doi: 10.1038/nnano.2014.167
[53] Ceballos, F. et al. Ultrafast charge separation and indirect exciton Formation in a MoS2-MoSe2 van der Waals heterostructure. ACS Nano 8, 12717-12724 (2014). doi: 10.1021/nn505736z
[54] Jin, C. H. et al. Ultrafast dynamics in van der Waals heterostructures. Nat. Nanotechnol. 13, 994-1003 (2018). doi: 10.1038/s41565-018-0298-5
[55] Chen, H. L. et al. Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures. Nat. Commun. 7, 12512 (2016). doi: 10.1038/ncomms12512
[56] Zhu, H. M. et al. Interfacial charge transfer circumventing momentum mismatch at two-dimensional van der Waals heterojunctions. Nano Lett. 17, 3591-3598 (2017). doi: 10.1021/acs.nanolett.7b00748
[57] Ji, Z. H. et al. Robust stacking-independent ultrafast charge transfer in MoS2/WS2 bilayers. ACS Nano 11, 12020-12026 (2017). doi: 10.1021/acsnano.7b04541
[58] Wang, K. et al. Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy. ACS Nano 10, 6612-6622 (2016). doi: 10.1021/acsnano.6b01486
[59] Peng, B. et al. Ultrafast charge transfer in MoS2/WSe2 p-n heterojunction. 2D Mater. 3, 025020 (2016). doi: 10.1088/2053-1583/3/2/025020
[60] Pan, S. D. et al. Ultrafast charge transfer between MoTe2 and MoS2 monolayers. 2D Mater. 4, 015033 (2017). doi: 10.1088/2053-1583/4/1/015033
[61] Zereshki, P. et al. Interlayer charge transfer in ReS2/WS2 van der Waals heterostructures. Phys. Rev. B 99, 195438 (2019). doi: 10.1103/PhysRevB.99.195438
[62] Ceballos, F. et al. Highly efficient and anomalous charge transfer in van der Waals trilayer semiconductors. Nano Lett. 17, 1623-1628 (2017). doi: 10.1021/acs.nanolett.6b04815
[63] Ma, E. Y. et al. Recording interfacial currents on the subnanometer length and femtosecond time scale by terahertz emission. Sci. Adv. 5, eaau0073 (2019). doi: 10.1126/sciadv.aau0073
[64] Zhu, X. Y. et al. Charge transfer excitons at van der Waals interfaces. J. Am. Chem. Soc. 137, 8313-8320 (2015). doi: 10.1021/jacs.5b03141
[65] Wang, H. et al. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures. Nat. Commun. 7, 11504 (2016). doi: 10.1038/ncomms11504
[66] Zhang, J. et al. Interlayer-state-coupling dependent ultrafast charge transfer in MoS2/WS2 bilayers. Adv. Sci. 4, 1700086 (2017). doi: 10.1002/advs.201700086
[67] Long, R. & Prezhdo, O. V. Quantum coherence facilitates efficient charge separation at a MoS2/MoSe2 van der Waals junction. Nano Lett. 16, 1996-2003 (2016). doi: 10.1021/acs.nanolett.5b05264
[68] Li, L. Q., Long, R. & Prezhdo, O. V. Charge separation and recombination in two-dimensional MoS2/WS2: time-domain ab initio modeling. Chem. Mater. 29, 2466-2473 (2017). doi: 10.1021/acs.chemmater.6b03727
[69] Tong, Q. J. et al. Topological mosaics in moire superlattices of van der Waals heterobilayers. Nat. Phys. 13, 356-362 (2017). doi: 10.1038/nphys3968
[70] Zheng, Q. J. et al. Phonon-assisted ultrafast charge transfer at van der Waals heterostructure interface. Nano Lett. 17, 6435-6442 (2017). doi: 10.1021/acs.nanolett.7b03429
[71] Liu, F., Li, Q. Y. & Zhu, X. Y. Direct determination of momentum-resolved electron transfer in the photoexcited van der Waals heterobilayer WS2/MoS2. Phys. Rev. B 101, 201405(R) (2020). doi: 10.1103/PhysRevB.101.201405
[72] Liu, J. Y., Zhang, X. & Lu, G. Excitonic effect drives ultrafast dynamics in van der Waals heterostructures. Nano Lett. 20, 4631-4637 (2020). doi: 10.1021/acs.nanolett.0c01519
[73] Qiu, D. Y., da Jornada, F. H. & Louie, S. G. Optical spectrum of MoS2: many-body effects and diversity of exciton states. Phys. Rev. Lett. 111, 216805 (2013). doi: 10.1103/PhysRevLett.111.216805
[74] Cheiwchanchamnangij, T. & Lambrecht, W. R. L. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Phys. Rev. B 85, 205302 (2012). doi: 10.1103/PhysRevB.85.205302
[75] Ramasubramaniam, A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B 86, 115409 (2012). doi: 10.1103/PhysRevB.86.115409
[76] Komsa, H. P. & Krasheninnikov, A. V. Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles. Phys. Rev. B 86, 241201(R) (2012). doi: 10.1103/PhysRevB.86.241201
[77] Shi, H. L. et al. Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2. Phys. Rev. B 87, 155304 (2013). doi: 10.1103/PhysRevB.87.155304
[78] Ye, Z. L. et al. Probing excitonic dark states in single-layer tungsten disulphide. Nature 513, 214-218 (2014). doi: 10.1038/nature13734
[79] Berkelbach, T. C., Hybertsen, M. S. & Reichman, D. R. Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys. Rev. B 88, 045318 (2013). doi: 10.1103/PhysRevB.88.045318
[80] Yu, H. Y. et al. Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers. Phys. Rev. Lett. 115, 187002 (2015). doi: 10.1103/PhysRevLett.115.187002
[81] Meckbach, L. et al. Interlayer excitons in transition-metal dichalcogenide heterostructures with type-Ⅱ band alignment. J. Phys. Condens. Matter 30, 374002 (2018). doi: 10.1088/1361-648X/aad984
[82] Gillen, R. & Maultzsch, J. Interlayer excitons in MoSe2/WSe2 heterostructures from first principles. Phys. Rev. B 97, 165306 (2018). doi: 10.1103/PhysRevB.97.165306
[83] Dong, X. Y. et al. Interlayer exciton-polaron effect in transition metal dichalcogenides van der Waals heterostructures. J. Phys. Chem. Solids 134, 1-4 (2019). doi: 10.1016/j.jpcs.2019.05.022
[84] Latini, S. et al. Interlayer excitons and band alignment in MoS2/hBN/WSe2 van der Waals heterostructures. Nano Lett. 17, 938-945 (2017). doi: 10.1021/acs.nanolett.6b04275
[85] Van der Donck, M. & Peeters, F. M. Interlayer excitons in transition metal dichalcogenide heterostructures. Phys. Rev. B 98, 115104 (2018). doi: 10.1103/PhysRevB.98.115104
[86] Kamban, H. C. & Pedersen, T. G. Interlayer excitons in van der Waals heterostructures: binding energy, Stark shift, and field-induced dissociation. Sci. Rep. 10, 5537 (2020). doi: 10.1038/s41598-020-62431-y
[87] Mouri, S. et al. Thermal dissociation of inter-layer excitons in MoS2/MoSe2 hetero-bilayers. Nanoscale 9, 6674-6679 (2017). doi: 10.1039/C7NR01598D
[88] Ponomarev, E. et al. Semiconducting van der Waals interfaces as artificial semiconductors. Nano Lett. 18, 5146-5152 (2018). doi: 10.1021/acs.nanolett.8b02066
[89] Merkl, P. et al. Ultrafast transition between exciton phases in van der Waals heterostructures. Nat. Mater. 18, 691-696 (2019). doi: 10.1038/s41563-019-0337-0
[90] Li, L. H. et al. Wavelength-tunable interlayer exciton emission at the near-infrared region in van der Waals semiconductor heterostructures. Nano Lett. 20, 3361-3368 (2020). doi: 10.1021/acs.nanolett.0c00258
[91] Yuan, L. et al. Twist-angle-dependent interlayer exciton diffusion in WS2-WSe2 heterobilayers. Nat. Mater. 19, 617-623 (2020). doi: 10.1038/s41563-020-0670-3
[92] Luong, D. H. et al. Tunneling photocurrent assisted by interlayer excitons in staggered van der Waals hetero-bilayers. Adv. Mater. 29, 1701512 (2017). doi: 10.1002/adma.201701512
[93] Gong, Y. J. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135-1142 (2014). doi: 10.1038/nmat4091
[94] Heo, H. et al. Rotation-misfit-free heteroepitaxial stacking and stitching growth of hexagonal transition-metal dichalcogenide monolayers by nucleation kinetics controls. Adv. Mater. 27, 3803-3810 (2015). doi: 10.1002/adma.201500846
[95] Karni, O. et al. Infrared interlayer exciton emission in MoS2/WSe2 heterostructures. Phys. Rev. Lett. 123, 247402 (2019). doi: 10.1103/PhysRevLett.123.247402
[96] Liu, Y. D. et al. Room temperature nanocavity laser with interlayer excitons in 2D heterostructures. Sci. Adv. 5, eaav4506 (2019). doi: 10.1126/sciadv.aav4506
[97] Lee, C. H. et al. Atomically thin p-n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676-681 (2014). doi: 10.1038/nnano.2014.150
[98] Bellus, M. Z. et al. Tightly bound trions in transition metal dichalcogenide heterostructures. ACS Nano 9, 6459-6464 (2015). doi: 10.1021/acsnano.5b02144
[99] Ceballos, F. et al. Probing charge transfer excitons in a MoSe2-WS2 van der Waals heterostructure. Nanoscale 7, 17523-17528 (2015). doi: 10.1039/C5NR04723D
[100] Alexeev, E. M. et al. Imaging of interlayer coupling in van der Waals heterostructures using a bright-field optical microscope. Nano Lett. 17, 5342-5349 (2017). doi: 10.1021/acs.nanolett.7b01763
[101] Nayak, P. K. et al. Probing evolution of twist-angle-dependent interlayer excitons in MoSe2/WSe2 van der Waals heterostructures. ACS Nano 11, 4041-4050 (2017). doi: 10.1021/acsnano.7b00640
[102] Ross, J. S. et al. Interlayer exciton optoelectronics in a 2D heterostructure p-n junction. Nano Lett. 17, 638-643 (2017). doi: 10.1021/acs.nanolett.6b03398
[103] Calman, E. V. et al. Indirect excitons and trions in MoSe2/WSe2 van der Waals heterostructures. Nano Lett. 20, 1869-1875 (2020). doi: 10.1021/acs.nanolett.9b05086
[104] Schaibley, J. R. et al. Directional interlayer spin-valley transfer in two-dimensional heterostructures. Nat. Commun. 7, 13747 (2016). doi: 10.1038/ncomms13747
[105] Surrente, A. et al. Defect healing and charge transfer-mediated valley polarization in MoS2/MoSe2/MoS2 trilayer van der Waals heterostructures. Nano Lett. 17, 4130-4136 (2017). doi: 10.1021/acs.nanolett.7b00904
[106] Paradisanos, I. et al. Controlling interlayer excitons in MoS2 layers grown by chemical vapor deposition. Nat. Commun. 11, 2391 (2020). doi: 10.1038/s41467-020-16023-z
[107] Kim, M. S. et al. Simultaneous hosting of positive and negative trions and the enhanced direct band emission in MoSe2/MoS2 heterostacked multilayers. ACS Nano 10, 6211-6219 (2016). doi: 10.1021/acsnano.6b02213
[108] Cheng, R. et al. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes. Nano Lett. 14, 5590-5597 (2014). doi: 10.1021/nl502075n
[109] Binder, J. et al. Upconverted electroluminescence via Auger scattering of interlayer excitons in van der Waals heterostructures. Nat. Commun. 10, 2335 (2019). doi: 10.1038/s41467-019-10323-9
[110] Wang, T. M. et al. Giant valley-zeeman splitting from spin-singlet and spin-triplet interlayer excitons in WSe2/MoSe2 heterostructure. Nano Lett. 20, 694-700 (2020). doi: 10.1021/acs.nanolett.9b04528
[111] Förg, M. et al. Cavity-control of interlayer excitons in van der Waals heterostructures. Nat. Commun. 10, 3697 (2019). doi: 10.1038/s41467-019-11620-z
[112] Yan, J. H. et al. Tunable control of interlayer excitons in WS2/MoS2 heterostructures via strong coupling with enhanced mie resonances. Adv. Sci. 6, 1802092 (2019). doi: 10.1002/advs.201802092
[113] Latini, S. et al. Cavity control of excitons in two-dimensional materials. Nano Lett. 19, 3473-3479 (2019). doi: 10.1021/acs.nanolett.9b00183
[114] Xia, J. et al. Strong coupling and pressure engineering in WSe2-MoSe2 heterobilayers. Nat. Phys. 17, 92-98 (2021). doi: 10.1038/s41567-020-1005-7
[115] Ubrig, N. et al. Design of van der Waals interfaces for broad-spectrum optoelectronics. Nat. Mater. 19, 299-304 (2020). doi: 10.1038/s41563-019-0601-3
[116] Wu, F. C., Lovorn, T. & MacDonald, A. H. Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers. Phys. Rev. B 97, 035306 (2018). doi: 10.1103/PhysRevB.97.035306
[117] Ciarrocchi, A. et al. Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures. Nat. Photonics 13, 131-136 (2019). doi: 10.1038/s41566-018-0325-y
[118] Kremser, M. et al. Discrete interactions between a few interlayer excitons trapped at a MoSe2-WSe2 heterointerface. npj 2D Mater. Appl. 4, 8 (2020). doi: 10.1038/s41699-020-0141-3
[119] Li, W. J. et al. Dipolar interactions between localized interlayer excitons in van der Waals heterostructures. Nat. Mater. 19, 624-629 (2020). doi: 10.1038/s41563-020-0661-4
[120] Debnath, B. et al. Exciton condensate in bilayer transition metal dichalcogenides: strong coupling regime. Phys. Rev. B 96, 174504 (2017). doi: 10.1103/PhysRevB.96.174504
[121] Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 3, 887 (2012). doi: 10.1038/ncomms1882
[122] Zeng, H. L. et al. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7, 490-493 (2012). doi: 10.1038/nnano.2012.95
[123] Mak, K. F. et al. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494-498 (2012). doi: 10.1038/nnano.2012.96
[124] Sallen, G. et al. Robust optical emission polarization in MoS2 monolayers through selective valley excitation. Phys. Rev. B 86, 081301(R) (2012). doi: 10.1103/PhysRevB.86.081301
[125] Mak, K. F. et al. The valley Hall effect in MoS2 transistors. Science 344, 1489-1492 (2014). doi: 10.1126/science.1250140
[126] Lee, J., Mak, K. F. & Shan, J. Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nat. Nanotechnol. 11, 421-425 (2016). doi: 10.1038/nnano.2015.337
[127] Lee, J. et al. Valley magnetoelectricity in single-layer MoS2. Nat. Mater. 16, 887-891 (2017). doi: 10.1038/nmat4931
[128] Wu, S. F. et al. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2. Nat. Phys. 9, 149-153 (2013). doi: 10.1038/nphys2524
[129] Li, Y. L. et al. Valley splitting and polarization by the zeeman effect in monolayer MoSe2. Phys. Rev. Lett. 113, 266804 (2014). doi: 10.1103/PhysRevLett.113.266804
[130] Srivastava, A. et al. Valley Zeeman effect in elementary optical excitations of monolayer WSe2. Nat. Phys. 11, 141-147 (2015). doi: 10.1038/nphys3203
[131] Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007). doi: 10.1103/PhysRevLett.99.236809
[132] Yao, W., Xiao, D. & Niu, Q. Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B 77, 235406 (2008). doi: 10.1103/PhysRevB.77.235406
[133] Xiao, D. et al. Coupled spin and valley physics in monolayers of MoS2 and other Group-Ⅵ dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012). doi: 10.1103/PhysRevLett.108.196802
[134] Yu, H. Y., Liu, G. B. & Yao, W. Brightened spin-triplet interlayer excitons and optical selection rules in van der Waals heterobilayers. 2D Mater. 5, 035021 (2018). doi: 10.1088/2053-1583/aac065
[135] Zhang, L. et al. Highly valley-polarized singlet and triplet interlayer excitons in van der Waals heterostructure. Phys. Rev. B 100, 041402(R) (2019). doi: 10.1103/PhysRevB.100.041402
[136] Huang, Z. M. et al. Robust room temperature valley hall effect of interlayer excitons. Nano Lett. 20, 1345-1351 (2020). doi: 10.1021/acs.nanolett.9b04836
[137] Hsu, W. T. et al. Negative circular polarization emissions from WSe2/MoSe2 commensurate heterobilayers. Nat. Commun. 9, 1356 (2018). doi: 10.1038/s41467-018-03869-7
[138] Wang, G. et al. Magneto-optics in transition metal diselenide monolayers. 2D Mater. 2, 034002 (2015). doi: 10.1088/2053-1583/2/3/034002
[139] Li, Z. P. et al. Revealing the biexciton and trion-exciton complexes in BN encapsulated WSe2. Nat. Commun. 9, 3719 (2018). doi: 10.1038/s41467-018-05863-5
[140] Li, Z. P. et al. Emerging photoluminescence from the dark-exciton phonon replica in monolayer WSe2. Nat. Commun. 10, 2469 (2019). doi: 10.1038/s41467-019-10477-6
[141] Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66-70 (2019). doi: 10.1038/s41586-019-0957-1
[142] Baek, H. et al. Highly energy-tunable quantum light from moiré-trapped excitons. Sci. Adv. 6, eaba8526 (2020). doi: 10.1126/sciadv.aba8526
[143] Woźniak, T. et al. Exciton g factors of van der Waals heterostructures from first-principles calculations. Phys. Rev. B 101, 235408 (2020). doi: 10.1103/PhysRevB.101.235408
[144] Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80-84 (2018). doi: 10.1038/nature26154
[145] Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43-50 (2018). doi: 10.1038/nature26160
[146] Wu, F. C., Lovorn, T. & MacDonald, A. H. Topological exciton bands in moiré heterojunctions. Phys. Rev. Lett. 118, 147401 (2017). doi: 10.1103/PhysRevLett.118.147401
[147] Zhang, N. et al. Moiré intralayer excitons in a MoSe2/MoS2 heterostructure. Nano Lett. 18, 7651-7657 (2018). doi: 10.1021/acs.nanolett.8b03266
[148] Lu, X. B., Li, X. Q. & Yang, L. Modulated interlayer exciton properties in a two-dimensional moire crystal. Phys. Rev. B 100, 155416 (2019). doi: 10.1103/PhysRevB.100.155416
[149] Geng, W. T. et al. Moiré potential, lattice corrugation, and band gap spatial variation in a twist-free MoTe2/MoS2 heterobilayer. J. Phys. Chem. Lett. 11, 2637-2646 (2020). doi: 10.1021/acs.jpclett.0c00605
[150] Tran, K. et al. Evidence for moire excitons in van der Waals heterostructures. Nature 567, 71-75 (2019). doi: 10.1038/s41586-019-0975-z
[151] Jin, C. H. et al. Observation of moire excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76-80 (2019). doi: 10.1038/s41586-019-0976-y
[152] Jin, C. H. et al. Identification of spin, valley and moire quasi-angular momentum of interlayer excitons. Nat. Phys. 15, 1140-1144 (2019). doi: 10.1038/s41567-019-0631-4
[153] Brotons-Gisbert, M. et al. Spin-layer locking of interlayer excitons trapped in moiré potentials. Nat. Mater. 19, 630-636 (2020). doi: 10.1038/s41563-020-0687-7
[154] Shimazaki, Y. et al. Strongly correlated electrons and hybrid excitons in a moire heterostructure. Nature 580, 472-477 (2020). doi: 10.1038/s41586-020-2191-2
[155] Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81-86 (2019). doi: 10.1038/s41586-019-0986-9
[156] Yu, H. Y. & Yao, W. Electrically tunable topological transport of moiré polaritons. Sci. Bull. 65, 1555-1562 (2020). doi: 10.1016/j.scib.2020.05.030
[157] Palummo, M., Bernardi, M. & Grossman, J. C. Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides. Nano Lett. 15, 2794-2800 (2015). doi: 10.1021/nl503799t
[158] Ovesen, S. et al. Interlayer exciton dynamics in van der Waals heterostructures. Commun. Phys. 2, 23 (2019). doi: 10.1038/s42005-019-0122-z
[159] Yu, Y. et al. Ultrafast Formation and dynamics of interlayer exciton in a large-area CVD-grown WS2/WSe2 heterostructure. J. Phys. Condens. Matter 30, 495701 (2018). doi: 10.1088/1361-648X/aaeb85
[160] Zhou, H. Z. et al. Controlling exciton and valley dynamics in two-dimensional heterostructures with atomically precise interlayer proximity. ACS Nano 14, 4618-4625 (2020). doi: 10.1021/acsnano.0c00218
[161] Choi, C. et al. Enhanced interlayer neutral excitons and trions in trilayer van der Waals heterostructures. npj 2D Mater. Appl. 2, 30 (2018). doi: 10.1038/s41699-018-0075-1
[162] Choi, J. et al. Moiré potential impedes interlayer exciton diffusion in van der Waals heterostructures. Sci. Adv. 6, eaba8866 (2020). doi: 10.1126/sciadv.aba8866
[163] Wang, Q. S. et al. Valley carrier dynamics in monolayer molybdenum disulfide from helicity-resolved ultrafast pump-probe spectroscopy. ACS Nano 7, 11087-11093 (2013). doi: 10.1021/nn405419h
[164] Mai, C. et al. Many-body effects in valleytronics: direct measurement of valley lifetimes in Single-Layer MoS2. Nano Lett. 14, 202-206 (2014). doi: 10.1021/nl403742j
[165] Zhu, C. R. et al. Exciton valley dynamics probed by Kerr rotation in WSe2 monolayers. Phys. Rev. B 90, 161302(R) (2014). doi: 10.1103/PhysRevB.90.161302
[166] Hao, K. et al. Direct measurement of exciton valley coherence in monolayer WSe2. Nat. Phys. 12, 677-682 (2016). doi: 10.1038/nphys3674
[167] Maialle, M. Z., de Andrada e Silva, E. A. & Sham, L. J. Exciton spin dynamics in quantum wells. Phys. Rev. B 47, 15776-15788 (1993). doi: 10.1103/PhysRevB.47.15776
[168] Yu, H. Y. et al. Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides. Nat. Commun. 5, 3876 (2014). doi: 10.1038/ncomms4876
[169] Yu, T. & Wu, M. W. Valley depolarization due to intervalley and intravalley electron-hole exchange interactions in monolayer MoS2. Phys. Rev. B 89, 205303 (2014). doi: 10.1103/PhysRevB.89.205303
[170] Jin, C. H. et al. Imaging of pure spin-valley diffusion current in WS2-WSe2 heterostructures. Science 360, 893-896 (2018). doi: 10.1126/science.aao3503
[171] Kim, J. et al. Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures. Sci. Adv. 3, e1700518 (2017). doi: 10.1126/sciadv.1700518
[172] High, A. A. et al. Control of exciton fluxes in an excitonic integrated circuit. Science 321, 229-231 (2008). doi: 10.1126/science.1157845
[173] Butov, L. V. Excitonic devices. Superlattices Microstruct. 108, 2-26 (2017).
[174] Feldmann, J. et al. Linewidth dependence of radiative exciton lifetimes in quantum wells. Phys. Rev. Lett. 59, 2337-2340 (1987). doi: 10.1103/PhysRevLett.59.2337
[175] Deveaud, B. et al. Enhanced radiative recombination of free excitons in GaAs quantum wells. Phys. Rev. Lett. 67, 2355-2358 (1991). doi: 10.1103/PhysRevLett.67.2355
[176] Butov, L. V. et al. Condensation of indirect excitons in coupled AlAs/GaAs quantum wells. Phys. Rev. Lett. 73, 304-307 (1994). doi: 10.1103/PhysRevLett.73.304
[177] Winbow, A. G. et al. Photon storage with nanosecond switching in coupled quantum well nanostructures. Nano Lett. 7, 1349-1351 (2007). doi: 10.1021/nl070386c
[178] Hagn, M. et al. Electric‐field‐induced exciton transport in coupled quantum well structures. Appl. Phys. Lett. 67, 232-234 (1995). doi: 10.1063/1.114677
[179] Butov, L. V. & Filin, A. I. Anomalous transport and luminescence of indirect excitons in AlAs/GaAs coupled quantum wells as evidence for exciton condensation. Phys. Rev. B 58, 1980-2000 (1998). doi: 10.1103/PhysRevB.58.1980
[180] Butov, L. V. et al. Photoluminescence kinetics of indirect excitons in GaAs/AlxGa1-xAs coupled quantum wells. Phys. Rev. B 59, 1625-1628 (1999). doi: 10.1103/PhysRevB.59.1625
[181] High, A. A. et al. Exciton optoelectronic transistor. Opt. Lett. 32, 2466-2468 (2007). doi: 10.1364/OL.32.002466
[182] Butov, L. V., Gossard, A. C. & Chemla, D. S. Macroscopically ordered state in an exciton system. Nature 418, 751-754 (2002). doi: 10.1038/nature00943
[183] Vörös, Z. et al. Long-distance diffusion of excitons in double quantum well structures. Phys. Rev. Lett. 94, 226401 (2005). doi: 10.1103/PhysRevLett.94.226401
[184] Ivanov, A. L. et al. Origin of the inner ring in photoluminescence patterns of quantum well excitons. Europhys. Lett. 73, 920-926 (2006). doi: 10.1209/epl/i2006-10002-4
[185] Rapaport, R., Chen, G. & Simon, S. H. Nonlinear dynamics of a dense two-dimensional dipolar exciton gas. Phys. Rev. B 73, 033319 (2006). doi: 10.1103/PhysRevB.73.033319
[186] Chemla, D. et al. Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures. IEEE J. Quantum Electron. 20, 265-275 (1984). doi: 10.1109/JQE.1984.1072393
[187] Szymanska, M. H. & Littlewood, P. B. Excitonic binding in coupled quantum wells. Phys. Rev. B 67, 193305 (2003). doi: 10.1103/PhysRevB.67.193305
[188] Grosso, G. et al. Excitonic switches operating at around 100 K. Nat. Photonics 3, 577-580 (2009). doi: 10.1038/nphoton.2009.166
[189] Li, Z. D. et al. Exciton transport under periodic potential in MoSe2/WSe2 heterostructures. https://arXiv.org/2002.01561 (2020).
[190] Woods, C. R. et al. Commensurate-incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 10, 451-456 (2014). doi: 10.1038/nphys2954
[191] Yoo, H. et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448-453 (2019). doi: 10.1038/s41563-019-0346-z
[192] Liu, Y. W. et al. Tunable lattice reconstruction, triangular network of chiral one-dimensional states, and bandwidth of flat bands in magic angle twisted bilayer graphene. Phys. Rev. Lett. 125, 236102 (2020). doi: 10.1103/PhysRevLett.125.236102
[193] Zhang, S. et al. Abnormal conductivity in low-angle twisted bilayer graphene. Sci. Adv. 6, eabc5555 (2020). doi: 10.1126/sciadv.abc5555
[194] Rosenberger, M. R. et al. Twist angle-dependent atomic reconstruction and Moiré patterns in transition metal dichalcogenide heterostructures. ACS Nano 14, 4550-4558 (2020). doi: 10.1021/acsnano.0c00088
[195] Weston, A. et al. Atomic reconstruction in twisted bilayers of transition metal dichalcogenides. Nat. Nanotechnol. 15, 592-597 (2020). doi: 10.1038/s41565-020-0682-9
[196] Paik, E. Y. et al. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures. Nature 576, 80-84 (2019). doi: 10.1038/s41586-019-1779-x
[197] Lukman, S. et al. High oscillator strength interlayer excitons in two-dimensional heterostructures for mid-infrared photodetection. Nat. Nanotechnol. 15, 675-682 (2020). doi: 10.1038/s41565-020-0717-2
[198] Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 10, 216-226 (2016). doi: 10.1038/nphoton.2015.282
[199] Butov, L. V. Cold exciton gases in coupled quantum well structures. J. Phys. Condens. Matter 19, 295202 (2007). doi: 10.1088/0953-8984/19/29/295202
[200] Eisenstein, J. P. & MacDonald, A. H. Bose-Einstein condensation of excitons in bilayer electron systems. Nature 432, 691-694 (2004). doi: 10.1038/nature03081
[201] Hsu, W. T. et al. Tailoring excitonic states of van der Waals bilayers through stacking configuration, band alignment, and valley spin. Sci. Adv. 5, eaax7407 (2019). doi: 10.1126/sciadv.aax7407