[1] Battle C, Broedersz CP, Fakhri N, Geyer VF, Howard J et al. Broken detailed balance at mesoscopic scales in active biological systems. Science 2016; 352: 604–607. doi: 10.1126/science.aac8167
[2] Acott TS, Katz DF, Hoskins DD. Movement characteristics of bovine epididymal spermatozoa: effects of forward motility protein and epididymal maturation. Biol Reprod 1983; 29: 389–399. doi: 10.1095/biolreprod29.2.389
[3] Keller JB, Rubinow SI. Swimming of flagellated microorganisms. Biophys J 1976; 16: 151–170. doi: 10.1016/S0006-3495(76)85672-X
[4] Gray J. The movement of the spermatozoa of the bull. J Exp Biol 1958; 35: 96–108.
[5] Rikmenspoel R. The tail movement of bull spermatozoa: observations and model calculations. Biophys J 1965; 5: 365–392. doi: 10.1016/S0006-3495(65)86723-6
[6] Ishijima S, Hamaguchi MS, Naruse M, Ishijima SA, Hamaguchi Y. Rotational movement of a spermatozoon around its long axis. J Exp Biol 1992; 163: 15–31.
[7] Mortimer ST. CASA—practical aspects. J Androl 2000; 21: 515–524. doi: 10.1002/j.1939-4640.2000.tb02116.x/abstract
[8] Mortimer ST, van der Horst G, Mortimer D. The future of computer-aided sperm analysis. Asian J Androl 2015; 17: 545–553. doi: 10.4103/1008-682X.154312
[9] Amann RP, Waberski D. Computer-assisted sperm analysis (CASA): Capabilities and potential developments. Theriogenology 2014; 81: 5–17. doi: 10.1016/j.theriogenology.2013.09.004
[10] Su TW, Xue L, Ozcan A. High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories. Proc Natl Acad Sci USA 2012; 109: 16018–16022. doi: 10.1073/pnas.1212506109
[11] DRM-600 CELL-VU® sperm counting chamber. Available at http://cellvu.com/products/drm-600-cell-vu-sperm-counting-chamber/ (accessed on September 2016).
[12] Liu J, Leung C, Lu Z, Sun Y Human sperm tracking, analysis, and manipulation. In: Rakotondrabe M editors. Smart Materials-Based Actuators at the Micro/Nano-Scale. Springer: New York, NY, USA. 2013, pp251–264.
[13] Smith DJ, Gaffney EA, Blake JR, Kirkman-Brown JC. Human sperm accumulation near surfaces: a simulation study. J Fluid Mech 2009; 621: 289–320. doi: 10.1017/S0022112008004953
[14] Bahr GF, Zeitler E. Study of bull spermatozoa. Quantitative electron microscopy. J Cell Biol 1964; 21: 175–189. doi: 10.1083/jcb.21.2.175
[15] Pesch S, Bergmann M. Structure of mammalian spermatozoa in respect to viability, fertility and cryopreservation. Micron 2006; 37: 597–612. doi: 10.1016/j.micron.2006.02.006
[16] Krzyzosiak J, Molan P, Vishwanath R. Measurements of bovine sperm velocities under true anaerobic and aerobic conditions. Anim Reprod Sci 1999; 55: 163–173. doi: 10.1016/S0378-4320(99)00016-0
[17] Minsky M. Memoir on inventing the confocal scanning microscope. Scanning 1988; 10: 128–138. doi: 10.1002/sca.4950100403
[18] Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EHK. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 2004; 305: 1007–1009. doi: 10.1126/science.1100035
[19] Planchon TA, Gao L, Milkie DE, Davidson MW, Galbraith JA et al. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat Methods 2011; 8: 417–423. doi: 10.1038/nmeth.1586
[20] Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG et al. Optical coherence tomography. Science 1991; 254: 1178–1181. doi: 10.1126/science.1957169
[21] Tearney GJ, Brezinski ME, Bouma BE, Boppart SA, Pitris C et al. In vivo endoscopic optical biopsy with optical coherence tomography. Science 1997; 276: 2037–2039. doi: 10.1126/science.276.5321.2037
[22] de Boer JF, Cense B, Park BH, Pierce MC, Tearney GJ et al. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett 2003; 28: 2067–2069. doi: 10.1364/OL.28.002067
[23] Drescher K, Leptos KC, Goldstein RE. How to track protists in three dimensions. Rev Sci Instrum 2009; 80: 014301. doi: 10.1063/1.3053242
[24] Silva-Villalobos F, Pimentel JA, Darszon A, Corkidi G (eds). Imaging of the 3D dynamics of flagellar beating in human sperm. In Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 26–30 August 2014; Chicago, IL, USA. IEEE: Chicago, IL, USA, 2014, pp190–193.
[25] Corkidi G, Taboada B, Wood CD, Guerrero A, Darszon A. Tracking sperm in three-dimensions. Biochem Biophys Res Commun 2008; 373: 125–129. doi: 10.1016/j.bbrc.2008.05.189
[26] Frauel Y, Naughton TJ, Matoba O, Tajahuerce E, Javidi B. Three-dimensional imaging and processing using computational holographic imaging. Proc IEEE 2006; 94: 636–653. doi: 10.1109/JPROC.2006.870704
[27] Rosen J, Brooker G. Non-scanning motionless fluorescence three-dimensional holographic microscopy. Nat Photon 2008; 2: 190–195. doi: 10.1038/nphoton.2007.300
[28] Rivenson Y, Stern A, Javidi B. Overview of compressive sensing techniques applied in holography [Invited]. Appl Opt 2013; 52: A423–A432. doi: 10.1364/AO.52.00A423
[29] Gorocs Z, Ozcan A. On-chip biomedical imaging. IEEE Rev Biomed Eng 2013; 6: 29–46. doi: 10.1109/RBME.2012.2215847
[30] Shan MG, Kandel ME, Popescu G. Refractive index variance of cells and tissues measured by quantitative phase imaging. Opt Express 2017; 25: 1573–1581. doi: 10.1364/OE.25.001573
[31] Kandel ME, Teng KW, Selvin PR, Popescu G. Label-free imaging of single microtubule dynamics using spatial light interference microscopy. ACS Nano 2017; 11: 647–655. doi: 10.1021/acsnano.6b06945
[32] Indebetouw G, Tada Y, Rosen J, Brooker G. Scanning holographic microscopy with resolution exceeding the Rayleigh limit of the objective by superposition of off-axis holograms. Appl Opt 2007; 46: 993–1000. doi: 10.1364/AO.46.000993
[33] Moon I, Javidi B. Three-dimensional identification of stem cells by computational holographic imaging. J Roy Soc Interface 2007; 4: 305–313. doi: 10.1098/rsif.2006.0175
[34] Xu WB, Jericho MH, Meinertzhagen IA, Kreuzer HJ. Digital in-line holography for biological applications. Proc Natl Acad Sci USA 2001; 98: 11301–11305. doi: 10.1073/pnas.191361398
[35] Matrecano M, Paturzo M, Ferraro P. Extended focus imaging in digital holographic microscopy: a review. Opt Eng 2014; 53: 112317. doi: 10.1117/1.OE.53.11.112317
[36] Colomb T, Pavillon N, Kühn J, Cuche E, Depeursinge C et al. Extended depth-of-focus by digital holographic microscopy. Opt Lett 2010; 35: 1840–1842. doi: 10.1364/OL.35.001840
[37] Di Caprio G, Gioffrè MA, Saffioti N, Grilli S, Ferraro P et al. Quantitative label-free animal sperm imaging by means of digital holographic microscopy. IEEE J Sel Top Quantum Electron 2010; 16: 833–840. doi: 10.1109/JSTQE.2009.2036741
[38] Memmolo P, Di Caprio G, Distante C, Paturzo M, Puglisi R et al. Identification of bovine sperm head for morphometry analysis in quantitative phase-contrast holographic microscopy. Opt Express 2011; 19: 23215–23226. doi: 10.1364/OE.19.023215
[39] Merola F, Miccio L, Memmolo P, Di Caprio G, Galli A et al. Digital holography as a method for 3D imaging and estimating the biovolume of motile cells. Lab Chip 2013; 13: 4512–4516. doi: 10.1039/c3lc50515d
[40] Di Caprio G, El Mallahi A, Ferraro P, Dale R, Coppola G et al. 4D tracking of clinical seminal samples for quantitative characterization of motility parameters. Biomed Opt Express 2014; 5: 690–700. doi: 10.1364/BOE.5.000690
[41] Jikeli JF, Alvarez L, Friedrich BM, Wilson LG, Pascal R et al. Sperm navigation along helical paths in 3D chemoattractant landscapes. Nat Commun 2015; 6: 7985. doi: 10.1038/ncomms8985
[42] Wilson LG, Carter LM, Reece SE. High-speed holographic microscopy of malaria parasites reveals ambidextrous flagellar waveforms. Proc Natl Acad Sci USA 2013; 110: 18769–18774. doi: 10.1073/pnas.1309934110
[43] Su TW, Erlinger A, Tseng D, Ozcan A. Compact and light-weight automated semen analysis platform using lensfree on-chip microscopy. Anal Chem 2010; 82: 8307–8312. doi: 10.1021/ac101845q
[44] Su TW, Choi I, Feng JW, Huang K, McLeod E et al. Sperm trajectories form chiral ribbons. Sci Rep 2013; 3: 1664. doi: 10.1038/srep01664
[45] Su TW, Choi I, Feng JW, Huang K, Ozcan A. High-throughput analysis of horse sperms' 3D swimming patterns using computational on-chip imaging. Anim Reprod Sci 2016; 169: 45–55. doi: 10.1016/j.anireprosci.2015.12.012
[46] Yu X, Hong J, Liu CG, Kim MK. Review of digital holographic microscopy for three-dimensional profiling and tracking. Opt Eng 2014; 53: 112306. doi: 10.1117/1.OE.53.11.112306
[47] Memmolo P, Miccio L, Paturzo M, Di Caprio G, Coppola G et al. Recent advances in holographic 3D particle tracking. Adv Opt Photon 2015; 7: 713–755. doi: 10.1364/AOP.7.000713
[48] Greenbaum A, Luo W, Su TW, Göröcs Z, Xue L et al. Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy. Nat Methods 2012; 9: 889–895. doi: 10.1038/nmeth.2114
[49] Greenbaum A, Luo W, Khademhosseinieh B, Su TW, Coskun AF et al. Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy. Sci Rep 2013; 3: 1717. doi: 10.1038/srep01717
[50] Gurtner M, Zemánek J. Twin-beam real-time position estimation of micro-objects in 3D. Meas Sci Technol 2016; 27: 127003. doi: 10.1088/0957-0233/27/12/127003
[51] Memmolo P, Finizio A, Paturzo M, Miccio L, Ferraro P. Twin-beams digital holography for 3D tracking and quantitative phase-contrast microscopy in microfluidics. Opt Express 2011; 19: 25833–25842. doi: 10.1364/OE.19.025833
[52] Merola F, Miccio L, Paturzo M, Finizio A, Grilli S et al. Driving and analysis of micro-objects by digital holographic microscope in microfluidics. Opt Lett 2011; 36: 3079–3081. doi: 10.1364/OL.36.003079
[53] Goodman JW. Introduction to Fourier Optics. New York: Roberts & Company Publishers; 2005.
[54] Mudanyali O, Tseng D, Oh C, Isikman SO, Sencan I et al. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications. Lab Chip 2010; 10: 1417–1428. doi: 10.1039/c000453g
[55] Wei QS, Luo W, Chiang S, Kappel T, Mejia C et al. Imaging and sizing of single DNA molecules on a mobile phone. ACS Nano 2014; 8: 12725–12733. doi: 10.1021/nn505821y
[56] Penfold LM, Holt C, Holt WV, Welch GR, Cran DG et al. Comparative motility of X and Y chromosome-bearing bovine sperm separated on the basis of DNA content by flow sorting. Mol Reprod Dev 1998; 50: 323–327. doi: 10.1002/(SICI)1098-2795(199807)50:3<323::AID-MRD8>3.0.CO;2-L
[57] Leung C, Lu Z, Esfandiari N, Casper RF, Sun Y. Detection and tracking of low contrast human sperm tail. In: Proceedings of the 2010 IEEE Conference on Automation Science and Engineering (CASE); 21–24 August 2010; Toronto, ON, USA. IEEE: Toronto, ON, USA, 2010, pp 263–268.
[58] Yang HF, Descombes X, Prigent S, Malandain G, Druart X et al. Head tracking and flagellum tracing for sperm motility analysis. In Proceedings of the 11th International Symposium on Biomedical Imaging (ISBI); 29 April–2 May 2014; Beijing, China. IEEE: Beijing, China, 2014, pp 310–313.
[59] Babcock DF, Wandernoth PM, Wennemuth G. Episodic rolling and transient attachments create diversity in sperm swimming behavior. BMC Biol 2014; 12: 67. doi: 10.1186/s12915-014-0067-3
[60] Afzelius B. Electron microscopy of the sperm tail results obtained with a new fixative. J Cell Biol 1959; 5: 269–278. doi: 10.1083/jcb.5.2.269
[61] Gibbons IR. Structural asymmetry in cilia and flagella. Nature 1961; 190: 1128–1129. doi: 10.1038/1901128a0
[62] Woolley DM Interpretations of the pattern of sperm tail movements. In: Fawcett DW, Bedford JM (eds). The Spermatozoon. Urban & Schwarzenburg: Baltimore-Munich. 1979, pp 69–79.
[63] Nosrati R, Driouchi A, Yip CM, Sinton D. Two-dimensional slither swimming of sperm within a micrometre of a surface. Nat Commun 2015; 6: 8703. doi: 10.1038/ncomms9703