[1] Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780–793 (2014). http://www.ncbi.nlm.nih.gov/pubmed/25286273
[2] Castro Neto, A. H. et al. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009). doi: 10.1103/RevModPhys.81.109
[3] Falkovsky, L. A. Optical properties of graphene. J. Phys.: Conf. Ser. 129, 012004 (2008). doi: 10.1088/1742-6596/129/1/012004
[4] Bolotin, K. I. et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008). doi: 10.1016/j.ssc.2008.02.024
[5] Xia, F. N. et al. Ultrafast graphene photodetector. Nat. Nanotechnol. 4, 839–843 (2009). http://pubs.acs.org/servlet/linkout?suffix=ref13/cit13&dbid=8&doi=10.1021%2Fnn4005704&key=19893532
[6] Sun, D. et al. Ultrafast hot-carrier-dominated photocurrent in graphene. Nat. Nanotechnol. 7, 114–118 (2012).
[7] Cox, J. D. & García de Abajo, F. J. Single-plasmon thermo-optical switching in graphene. Nano Lett. 19, 3743–3750 (2019). doi: 10.1021/acs.nanolett.9b00879
[8] Yu, R. W., Manjavacas, A. & García de Abajo, F. J. Ultrafast radiative heat transfer. Nat. Commun. 8, 2 (2017). doi: 10.1038/s41467-016-0013-x
[9] Castilla, S. et al. Fast and sensitive terahertz detection using an antenna-integrated graphene pn junction. Nano Lett. 19, 2765–2773 (2019). doi: 10.1021/acs.nanolett.8b04171
[10] Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008). doi: 10.1126/science.1156965
[11] Konstantatos, G. et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7, 363–368 (2012). http://www.nature.com/articles/nnano.2012.60
[12] Goossens, S. et al. Broadband image sensor array based on graphene–CMOS integration. Nat. Photonics 11, 366–371 (2017). doi: 10.1038/nphoton.2017.75
[13] Schuler, S. et al. Controlled generation of a p–n junction in a waveguide integrated graphene photodetector. Nano Lett. 16, 7107–7112 (2016). doi: 10.1021/acs.nanolett.6b03374
[14] Gan, X. T. et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics 7, 883–887 (2013). doi: 10.1038/nphoton.2013.253
[15] Fang, J. et al. Enhanced graphene photodetector with fractal metasurface. Nano Lett. 17, 57–62 (2017). doi: 10.1021/acs.nanolett.6b03202
[16] Echtermeyer, T. J. et al. Strong plasmonic enhancement of photovoltage in graphene. Nat. Commun. 2, 458 (2011). doi: 10.1038/ncomms1464
[17] Yao, Y. et al. High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection. Nano Lett. 14, 3749–3754 (2014). doi: 10.1021/nl500602n
[18] Liu, Y. et al. Plasmon resonance enhanced multicolour photodetection by graphene. Nat. Commun. 2, 579 (2011). doi: 10.1038/ncomms1589
[19] Emani, N. K. et al. Electrically tunable damping of plasmonic resonances with graphene. Nano Lett. 12, 5202–5206 (2012). doi: 10.1021/nl302322t
[20] Song, J. C. W. et al. Hot carrier transport and photocurrent response in graphene. Nano Lett. 11, 4688–4692 (2011). doi: 10.1021/nl202318u
[21] Xu, X. D. et al. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10, 562–566 (2010). doi: 10.1021/nl903451y
[22] Gabor, N. M. et al. Hot carrier-assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011). doi: 10.1126/science.1211384
[23] Ghahari, F. et al. Enhanced thermoelectric power in graphene: violation of the mott relation by inelastic scattering. Phys. Rev. Lett. 116, 136802 (2016). doi: 10.1103/PhysRevLett.116.136802
[24] Yu, N. F. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713
[25] Henstridge, M. et al. Synchrotron radiation from an accelerating light pulse. Science 362, 439–442 (2018). doi: 10.1126/science.aat5915
[26] Henstridge, M. et al. Accelerating light with metasurfaces. Optica 5, 678–681 (2018). doi: 10.1364/OPTICA.5.000678
[27] Choudhury, S. M. et al. Material platforms for optical metasurfaces. Nanophotonics 7, 959–987 (2018). doi: 10.1515/nanoph-2017-0130
[28] Coppens, Z. J. et al. Probing and controlling photothermal heat generation in plasmonic nanostructures. Nano Lett. 13, 1023–1028 (2013). doi: 10.1021/nl304208s
[29] Guler, U. et al. Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles. Nano Lett. 13, 6078–6083 (2013). doi: 10.1021/nl4033457
[30] Ndukaife, J. C., Shalaev, V. M. & Boltasseva, A. Plasmonics—turning loss into gain. Science 351, 334–335 (2016). doi: 10.1126/science.aad9864
[31] Lee, C. H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014). http://www.nature.com/nnano/journal/v9/n9/abs/nnano.2014.150.html
[32] Giovannetti, G. et al. Doping graphene with metal contacts. Phys. Rev. Lett. 101, 026803 (2008). doi: 10.1103/PhysRevLett.101.026803
[33] Mueller, T. et al. Role of contacts in graphene transistors: a scanning photocurrent study. Phys. Rev. B 79, 245430 (2009). doi: 10.1103/PhysRevB.79.245430
[34] Xia, F. N. et al. Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett. 9, 1039–1044 (2009). doi: 10.1021/nl8033812
[35] Brenneis, A. et al. THz-circuits driven by photo-thermoelectric, gate-tunable graphene-junctions. Sci. Rep. 6, 35654 (2016). doi: 10.1038/srep35654
[36] Ding, F. et al. A review of gap-surface plasmon metasurfaces: fundamentals and applications. Nanophotonics 7, 1129–1156 (2018). doi: 10.1515/nanoph-2017-0125
[37] Hsiao, H. H., Chu, C. H. & Tsai, D. P. Fundamentals and applications of metasurfaces. Small Methods 1, 1600064 (2017). doi: 10.1002/smtd.201600064
[38] Pors, A. et al. Gap plasmon-based metasurfaces for total control of reflected light. Sci. Rep. 3, 2155 (2013). doi: 10.1038/srep02155
[39] Wang, D. et al. Spatial and temporal nanoscale plasmonic heating quantified by thermoreflectance. Nano Lett. 19, 3796–3803 (2019). doi: 10.1021/acs.nanolett.9b00940
[40] Piper, J. R. & Fan, S. H. Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance. ACS Photonics 1, 347–353 (2014). doi: 10.1021/ph400090p
[41] Chung, T. F. et al. Synthetic graphene grown by chemical vapor deposition on copper foils. Int. J. Mod. Phys. B 27, 1341002 (2013). doi: 10.1142/S0217979213410026
[42] Freitag, M. et al. Photocurrent in graphene harnessed by tunable intrinsic plasmons. Nat. Commun. 4, 1951 (2013). doi: 10.1038/ncomms2951
[43] Knight, M. W. et al. Photodetection with active optical antennas. Science 332, 702–704 (2011). doi: 10.1126/science.1203056
[44] Michel, J., Liu, J. F. & Kimerling, L. C. High-performance Ge-on-Si photodetectors. Nat. Photonics 4, 527–534 (2010). doi: 10.1038/nphoton.2010.157
[45] Perea-López, N. et al. Photosensor device based on few-layered WS2 films. Adv. Funct. Mater. 23, 5511–5517 (2013). doi: 10.1002/adfm.201300760
[46] O'Brien, G. A. et al. A single polymer nanowire photodetector. Adv. Mater. 18, 2379–2383 (2006). doi: 10.1002/adma.200601012
[47] Thorlabs, Inc. USA, at http://www.thorlabs.com/, Photodiodes (2020).
[48] Hamamatsu, at http://www.hamamatsu.com/, Si photodiodes (2020).