[1] Rotter, I. A non-Hermitian Hamilton operator and the physics of open quantum systems. J. Phys. A-Math. Theor. 42, 153001 (2009). doi: 10.1088/1751-8113/42/15/153001
[2] Moiseyev, N. Non-Hermitian Quantum Mechanics (Cambridge University Press, Cambridge, 2011).
[3] El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11-19 (2018). doi: 10.1038/nphys4323
[4] Zhao, H. & Feng, L. Parity-time symmetric photonics. National Science Review 5, 183-199 (2018). doi: 10.1093/nsr/nwy011
[5] Berry, M. V. Physics of nonhermitian degeneracies. Czech. J. Phys. 54, 1039-1047 (2004). doi: 10.1023/B:CJOP.0000044002.05657.04
[6] Heiss, W. D. The physics of exceptional points. J. Phys. A-Math. Theor. 45, 444016 (2012). doi: 10.1088/1751-8113/45/44/444016
[7] Guo, A. et al. Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009). doi: 10.1103/PhysRevLett.103.093902
[8] Rüter, C. E. et al. Observation of parity-time symmetry in optics. Nat. Phys. 6, 192-195 (2010). doi: 10.1038/nphys1515
[9] Benisty, H. et al. Implementation of PT symmetric devices using plasmonics: principle and applications. Opt. Express 19, 18004-18019 (2011). doi: 10.1364/OE.19.018004
[10] Ge, L. & Stone, A. D. Parity-time symmetry breaking beyond one dimension: the role of degeneracy. Phys. Rev. X 4, 031011 (2014).
[11] Peng, B. et al. Loss-induced suppression and revival of lasing. Science 346, 328-332 (2014). doi: 10.1126/science.1258004
[12] Zhen, B. et al. Spawning rings of exceptional points out of Dirac cones. Nature 525, 354-358 (2015). doi: 10.1038/nature14889
[13] Xu, H. et al. Topological energy transfer in an optomechanical system with exceptional points. Nature 537, 80-83 (2016). doi: 10.1038/nature18604
[14] Hodaei, H. et al. Enhanced sensitivity at higher-order exceptional points. Nature 548, 187-191 (2017). doi: 10.1038/nature23280
[15] Chen, W. J. et al. Exceptional points enhance sensing in an optical microcavity. Nature 548, 192-196 (2017). doi: 10.1038/nature23281
[16] Assawaworrarit, S., Yu, X. F. & Fan, S. H. Robust wireless power transfer using a nonlinear parity-time-symmetric circuit. Nature 546, 387-390 (2017). doi: 10.1038/nature22404
[17] Zhang, X. L. et al. Exceptional points and symmetry recovery in a two-state system. Phys. Rev. A 96, 022112 (2017). doi: 10.1103/PhysRevA.96.022112
[18] Heiss, W. D. Repulsion of resonance states and exceptional points. Phys. Rev. E 61, 929-932 (2000). doi: 10.1103/PhysRevE.61.929
[19] Dembowski, C. et al. Experimental observation of the topological structure of exceptional points. Phys. Rev. Lett 86, 787-790 (2001). doi: 10.1103/PhysRevLett.86.787
[20] Gao, T. et al. Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard. Nature 526, 554-558 (2015). doi: 10.1038/nature15522
[21] Ding, K. et al. Emergence, coalescence, and topological properties of multiple exceptional points and their experimental realization. Phys. Rev. X 6, 021007 (2016).
[22] Uzdin, R., Mailybaev, A. & Moiseyev, N. On the observability and asymmetry of adiabatic state flips generated by exceptional points. J. Phys. A-Math. Theor. 44, 435302 (2011). doi: 10.1088/1751-8113/44/43/435302
[23] Berry, M. V. & Uzdin, R. Slow non-Hermitian cycling: exact solutions and the Stokes phenomenon. J. Phys. A-Math. Theor. 44, 435303 (2011). doi: 10.1088/1751-8113/44/43/435303
[24] Gilary, I., Mailybaev, A. A. & Moiseyev, N. Time-asymmetric quantum-state-exchange mechanism. Phys. Rev. A 88, 010102 (2013). doi: 10.1103/PhysRevA.88.010102
[25] Milburn, T. J. et al. General description of quasiadiabatic dynamical phenomena near exceptional points. Phys. Rev. A 92, 052124 (2015). doi: 10.1103/PhysRevA.92.052124
[26] Hassan, A. U. et al. Dynamically encircling exceptional points: exact evolution and polarization state conversion. Phys. Rev. Lett. 118, 093002 (2017). doi: 10.1103/PhysRevLett.118.093002
[27] Hassan, A. U. et al. Chiral state conversion without encircling an exceptional point. Phys. Rev. A 96, 052129 (2017). doi: 10.1103/PhysRevA.96.052129
[28] Graefe, E. M., Mailybaev, A. A. & Moiseyev, N. Breakdown of adiabatic transfer of light in waveguides in the presence of absorption. Phys. Rev. A 88, 033842 (2013). doi: 10.1103/PhysRevA.88.033842
[29] Doppler, J. et al. Dynamically encircling an exceptional point for asymmetric mode switching. Nature 537, 76-79 (2016). doi: 10.1038/nature18605
[30] Yoon, J. W. et al. Time-asymmetric loop around an exceptional point over the full optical communications band. Nature 562, 86-90 (2018). doi: 10.1038/s41586-018-0523-2
[31] Choi, Y. et al. Extremely broadband, on-chip optical nonreciprocity enabled by mimicking nonlinear anti-adiabatic quantum jumps near exceptional points. Nat. Commun. 8, 14154 (2017). doi: 10.1038/ncomms14154
[32] Politi, A. et al. Silica-on-silicon waveguide quantum circuits. Science 320, 646-649 (2008). doi: 10.1126/science.1155441
[33] Piggott, A. Y. et al. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat. Photon. 9, 374-377 (2015). doi: 10.1038/nphoton.2015.69
[34] Zhang, X. L. et al. Dynamically encircling exceptional points: in situ control of encircling loops and the role of the starting point. Phys. Rev.X 8, 021066 (2018).
[35] Ge, L. & Türeci, H. E. Antisymmetric PT-photonic structures with balanced positive- and negative-index materials. Phys. Rev. A 88, 053810 (2013). doi: 10.1103/PhysRevA.88.053810
[36] Antonosyan, D. A., Solntsev, A. S. & Sukhorukov, A. A. Parity-time anti-symmetric parametric amplifier. Opt. Lett. 40, 4575-4578 (2015). doi: 10.1364/OL.40.004575
[37] Peng, P. et al. Anti-parity-time symmetry with flying atoms. Nat. Phys. 12, 1139-1145 (2016). doi: 10.1038/nphys3842
[38] Yang, F., Liu, Y. C. & You, L. Anti-PT symmetry in dissipatively coupled optical systems. Phys. Rev. A 96, 053845 (2017). doi: 10.1103/PhysRevA.96.053845
[39] Konotop, V. V. & Zezyulin, D. A. Odd-time reversal PT symmetry induced by an anti-PT-symmetric medium. Phys. Rev. Lett. 120, 123902 (2018). doi: 10.1103/PhysRevLett.120.123902
[40] Choi, Y. et al. Observation of an anti-PT-symmetric exceptional point and energy-difference conserving dynamics in electrical circuit resonators. Nat. Commun. 9, 2182 (2018). doi: 10.1038/s41467-018-04690-y
[41] Slater, L. J. Confluent Hypergeometric Functions. (Cambridge University Press, Cambridge, 1960).
[42] COMSOL. COMSOL Multiphysics® v. 4.3. https://www.comsol.com (COMSOL AB, Stockholm, Sweden).