[1] Williams, C. T. & Beattie, D. A. Probing buried interfaces with non-linear optical spectroscopy. Surf. Sci. 500, 545–576 (2002). doi: 10.1016/S0039-6028(01)01536-9
[2] Mannhart, J. & Schlom, D. G. Oxide interfaces—an opportunity for electronics. Science 327, 1607–1611 (2010). doi: 10.1126/science.1181862
[3] Ngai, J. H., Walker, F. J. & Ahn, C. H. Correlated oxide physics and electronics. Annu. Rev. Mater. Res. 44, 1–17 (2014). doi: 10.1146/annurev-matsci-070813-113248
[4] Ngai, J. H. et al. Electrically coupling complex oxides to semiconductors: a route to novel material functionalities. J. Mater. Res. 32, 249–259 (2017). doi: 10.1557/jmr.2016.496
[5] Mathews, S. et al. Ferroelectric field effect transistor based on epitaxial perovskite heterostructures. Science 276, 238–240 (1997). doi: 10.1126/science.276.5310.238
[6] Jackeli, G. & Khaliullin, G. Spin, orbital, and charge order at the interface between correlated oxides. Phys. Rev. Lett. 101, 216804 (2008). doi: 10.1103/PhysRevLett.101.216804
[7] Ohtomo, A. et al. Artificial charge-modulationin atomic-scale perovskite titanate superlattices. Nature 419, 378–380 (2002). doi: 10.1038/nature00977
[8] Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004). doi: 10.1038/nature02308
[9] Gozar, A. et al. High-temperature interface superconductivity between metallic and insulating copper oxides. Nature 455, 782–785 (2008). doi: 10.1038/nature07293
[10] Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103–113 (2012). doi: 10.1038/nmat3223
[11] Reyren, N. et al. Superconducting interfaces between insulating oxides. Science 317, 1196–1199 (2007). doi: 10.1126/science.1146006
[12] Reiner, J. W., Walker, F. J. & Ahn, C. H. Atomically engineered oxide interfaces. Science 323, 1018–1019 (2009). doi: 10.1126/science.1169058
[13] Schlom, D. G. & Pfeiffer, L. N. Upward mobility rocks! Nat. Mater. 9, 881–883 (2010). doi: 10.1038/nmat2888
[14] Siemons, W. et al. Origin of charge density at LaAlO3 on SrTiO3 heterointerfaces: possibility of intrinsic doping. Phys. Rev. Lett. 98, 196802 (2007). doi: 10.1103/PhysRevLett.98.196802
[15] Liu, Z. Q. et al. Origin of the two-dimensional electron gas at LaAlO3/SrTiO3 interfaces: the role of oxygen vacancies and electronic reconstruction. Phys. Rev. X 3, 021010 (2013). http://arxiv.org/abs/1305.5016
[16] Kumari, P. et al. Nanoscale 2D semi-conductors–Impact of structural properties on light propagation depth and photocatalytic performance. Sep. Purif. Technol. 258, 118011 (2021). doi: 10.1016/j.seppur.2020.118011
[17] Mayer, M. T. et al. Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: case studies on hematite. Acc. Chem. Res. 46, 1558–1566 (2013). doi: 10.1021/ar300302z
[18] Gholipour, M. R. et al. Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting. Nanoscale 7, 8187–8208 (2015). doi: 10.1039/C4NR07224C
[19] Stoev, K. & Sakurai, K. Recent progresses in nanometer scale analysis of buried layers and interfaces in thin films by X-rays and Neutrons. Anal. Sci. 36, 901–922 (2020). doi: 10.2116/analsci.19R010
[20] Friedbacher, G. & Bubert, H. Surface and Thin Film Analysis: A Compendium of Principles, Instrumentation, and Applications. 2nd edn. (Weinheim: Wiley-VCH, 2011).
[21] Imae, T. Nanolayer Research: Methodology and Technology for Green Chemistry. (Amsterdam: Elsevier, 2017).
[22] González-Cobos, J. & de Lucas-Consuegra, A. A review of surface analysis techniques for the investigation of the phenomenon of electrochemical promotion of catalysis with alkaline ionic conductors. Catalysts 6, 15 (2016). doi: 10.3390/catal6010015
[23] Seah M., Chiffre L. Surface and Interface Characterization. In: Springer Handbook of Materials Measurement Methods. (eds Czichos H., Saito T., Smith L.) (Berlin: Springer 2006).
[24] Zachman, M. J. et al. Emerging electron microscopy techniques for probing functional interfaces in energy materials. Angew. Chem. Int. Ed. 59, 1384–1396 (2020). doi: 10.1002/anie.201902993
[25] Zhou, H. et al. Interfaces between hexagonal and cubic oxides and their structure alternatives. Nat. Commun. 8, 1474 (2017). doi: 10.1038/s41467-017-01655-5
[26] Nakagawa, N., Hwang, H. Y. & Muller, D. A. Why some interfaces cannot be sharp. Nat. Mater. 5, 204–209 (2006). doi: 10.1038/nmat1569
[27] Muller, D. A. et al. Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 1073–1076 (2008). doi: 10.1126/science.1148820
[28] Brillson, L. J. Applications of depth-resolved cathodoluminescence spectroscopy. J. Phys. D: Appl. Phys. 45, 183001 (2012). doi: 10.1088/0022-3727/45/18/183001
[29] Chen, L. et al. Reversing abnormal hole localization in high-Al-content AlGaN quantum well to enhance deep ultraviolet emission by regulating the orbital state coupling. Light. : Sci. Appl. 9, 104 (2020). doi: 10.1038/s41377-020-00342-3
[30] Balerna, A. & Mobilio, S. Introduction to synchrotron radiation. In: Synchrotron Radiation (ed Mobilio, S., Boscherini, F. & Meneghini, C.) (Berlin: Springer, 2015).
[31] Pryds, N. & Esposito, V. Metal Oxide-Based Thin Film Structures. (Amsterdam: Elsevier, 2018).
[32] Seah, M. P. & Dench, W. A. Quantitative electron spectroscopy of surfaces: a standard database for electron inelastic mean free paths in solids. Surf. Interface Anal. 1, 2–11 (1979). doi: 10.1002/sia.740010103
[33] Cancellieri, C. & Strocov, V. N. Spectroscopy of Complex Oxide Interfaces: Photoemission and Related Spectroscopies. (Cham: Springer, 2018).
[34] Krzywiecki, M., Sarfraz, A. & Erbe, A. Towards monomaterial p-n junctions: Single-step fabrication of tin oxide films and their non-destructive characterisation by angle-dependent X-ray photoelectron spectroscopy. Appl. Phys. Lett. 107, 231601 (2015). doi: 10.1063/1.4937003
[35] Sing, M. et al. Profiling the interface electron gas of LaAlO3/SrTiO3 heterostructures with hard x-ray photoelectron spectroscopy. Phys. Rev. Lett. 102, 176805 (2009). doi: 10.1103/PhysRevLett.102.176805
[36] Mizushima, H. et al. Impact of oxygen on band structure at the Ni/GaN interface revealed by hard X-ray photoelectron spectroscopy. Appl. Phys. Lett. 118, 121603 (2021). doi: 10.1063/5.0033165
[37] Sushko, P. V. & Chambers, S. A. Extracting band edge profiles at semiconductor heterostructures from hard-x-ray core-level photoelectron spectra. Sci. Rep. 10, 13028 (2020). doi: 10.1038/s41598-020-69658-9
[38] Romanyuk, O. et al. Hard X-ray photoelectron spectroscopy study of core level shifts at buried GaP/Si(001) interfaces. Surf. Interface Anal. 52, 933–938 (2020). doi: 10.1002/sia.6829
[39] Spencer, B. F. et al. Inelastic background modelling applied to hard X-ray photoelectron spectroscopy of deeply buried layers: a comparison of synchrotron and lab-based (9.25 keV) measurements. Appl. Surf. Sci. 541, 148635 (2021). doi: 10.1016/j.apsusc.2020.148635
[40] Kobayashi, M. et al. Digging up bulk band dispersion buried under a passivation layer. Appl. Phys. Lett. 101, 242103 (2012). doi: 10.1063/1.4770289
[41] Drera, G. et al. Spectroscopic evidence of in-gap states at the SrTiO3/LaAlO3 ultrathin interfaces. Appl. Phys. Lett. 98, 052907 (2011). doi: 10.1063/1.3549177
[42] Koitzsch, A. et al. In-gap electronic structure of LaAlO3-SrTiO3 heterointerfaces investigated by soft x-ray spectroscopy. Phys. Rev. B 84, 245121 (2011). doi: 10.1103/PhysRevB.84.245121
[43] Cancellieri, C. et al. Interface Fermi states of LaAlO3/SrTiO3 and related heterostructures. Phys. Rev. Lett. 110, 137601 (2013). doi: 10.1103/PhysRevLett.110.137601
[44] Berner, G. et al. Direct k-space mapping of the electronic structure in an oxide-oxide interface. Phys. Rev. Lett. 110, 247601 (2013). doi: 10.1103/PhysRevLett.110.247601
[45] Cancellieri, C. et al. Doping-dependent band structure of LaAlO3/SrTiO3 interfaces by soft x-ray polarization-controlled resonant angle-resolved photoemission. Phys. Rev. B 89, 121412 (2014). doi: 10.1103/PhysRevB.89.121412
[46] Crepaldi, A. et al. Interplay between electronic and structural properties in the Pb/Ag(1 0 0) interface. J. Phys. : Condens. Matter 27, 455502 (2015). doi: 10.1088/0953-8984/27/45/455502
[47] Nemšák, S. et al. Observation by resonant angle-resolved photoemission of a critical thickness for 2-dimensional electron gas formation in SrTiO3 embedded in GdTiO3. Appl. Phys. Lett. 107, 231602 (2015). doi: 10.1063/1.4936936
[48] Bouravleuv, A. D. et al. Electronic structure of (In, Mn)As quantum dots buried in GaAs investigated by soft-x-ray ARPES. Nanotechnology 27, 425706 (2016). doi: 10.1088/0957-4484/27/42/425706
[49] Lev, L. L. et al. Band structure of the EuO/Si interface: justification for silicon spintronics. J. Mater. Chem. C. 5, 192–200 (2017). doi: 10.1039/C6TC03737B
[50] Bruno, F. Y. et al. Electronic structure of buried LaNiO3 layers in (111)-oriented LaNiO3/LaMnO3 superlattices probed by soft x-ray ARPES. APL. Materials 5, 016101 (2017). http://arxiv.org/abs/1611.08399
[51] Woerle, J. et al. Electronic band structure of the buried SiO2/SiC interface investigated by soft x-ray ARPES. Appl. Phys. Lett. 110, 132101 (2017). doi: 10.1063/1.4979102
[52] Strocov, V. N. et al. Electronic phase separation at LaAlO3/SrTiO3 interfaces tunable by oxygen deficiency. Physical Review. Materials 3, 106001 (2019). http://arxiv.org/abs/1908.06321
[53] Gray, A. X. et al. Momentum-resolved electronic structure at a buried interface from soft X-ray standing-wave angle-resolved photoemission. EPL 104, 17004 (2013). doi: 10.1209/0295-5075/104/17004
[54] Plumb, N. C. & Radovic, M. Angle-resolved photoemission spectroscopy studies of metallic surface and interface states of oxide insulators. J. Phys. : Condens. Matter 29, 433005 (2017). doi: 10.1088/1361-648X/aa833f
[55] Diebold, U. & Shinn, N. D. Adsorption and thermal stability of Mn on TiO2(110): 2p X-ray absorption spectroscopy and soft X-ray photoemission. Surf. Sci. 343, 53–60 (1995). doi: 10.1016/0039-6028(95)00780-6
[56] Gao, X. Y. et al. Thickness dependence of X-ray absorption and photoemission in Fe thin films on Si (0 0 1). J. Electron Spectrosc. Relat. Phenom. 151, 199–203 (2006). doi: 10.1016/j.elspec.2005.12.006
[57] Sánchez-Agudo, M. et al. Electronic interaction at the TiO2–Al2O3 interface as observed by X-ray absorption spectroscopy. Surf. Sci. 482-485, 470–475 (2001). doi: 10.1016/S0039-6028(00)01048-7
[58] Holmström, E. et al. Sample preserving deep interface characterization technique. Phys. Rev. Lett. 97, 266106 (2006). doi: 10.1103/PhysRevLett.97.266106
[59] Nalwa, H. S. Handbook of Surfaces and Interfaces of Materials (San Diego: Academic Press, 2001).
[60] Henrich, V. E. & Cox, P. A. The Surface Science of Metal Oxides. (Cambridge: Cambridge University Press, 1994).
[61] Chambers, S. A. Epitaxial growth and properties of thin film oxides. Surf. Sci. Rep. 39, 105–180 (2000). doi: 10.1016/S0167-5729(00)00005-4
[62] Schlom, D. G. et al. A thin film approach to engineering functionality into oxides. J. Am. Ceram. Soc. 91, 2429–2454 (2008). doi: 10.1111/j.1551-2916.2008.02556.x
[63] Franchi, S. Molecular beam epitaxy: fundamentals, historical background and future prospects. In: Molecular Beam Epitaxy: From Research to Mass Production (ed Henini, M.) (Amsterdam: Elsevier, 2013).
[64] Schlom, D. G. & Harris, J. S. Jr. MBE Growth Of High Tc superconductors. in Molecular Beam Epitaxy: Applications to Key Materials (ed Farrow, R. F. C.) (Park Ridge: Noyes, 1995), 505-622.
[65] Bozovic, I. & Schlom, D. G. Superconducting thin films: materials, preparation, and properties. In: Encyclopedia of Materials: Science and Technology (eds Buschow, K. H. J. et al.) (Amsterdam: Elsevier, 2001), 8955-8964.
[66] Henini M. Molecular Beam Epitaxy: From Research to Mass Production (Amsterdam: Elsevier 2018)
[67] Chrisey, D. B. & Hubler, G. K. Pulsed Laser Deposition of Thin Films. (New York: Wiley, 1994).
[68] Frey, T. et al. Effect of atomic oxygen on the initial growth mode in thin epitaxial cuprate films. Phys. Rev. B 49, 3483–3491 (1994). doi: 10.1103/PhysRevB.49.3483
[69] Koster, G. et al. Imposed layer-by-layer growth by pulsed laser interval deposition. Appl. Phys. Lett. 74, 3729–3731 (1999). doi: 10.1063/1.123235
[70] Brock, J. D. et al. Nucleation, coarsening, and coalescence during layer-by-layer growth of complex oxides via pulsed laser deposition: time-resolved, diffuse X-ray scattering studies. Mater. Sci. Eng. : A 528, 72–76 (2010). doi: 10.1016/j.msea.2010.07.053
[71] de Keijser, M. & Dormans, G. J. M. Chemical vapor deposition of electroceramic thin films. MRS Bull. 21, 37–43 (1996).
[72] Roeder, J. F. et al. Liquid-delivery MOCVD: chemical and process perspectives on ferro-electric thin film growth. Adv. Mater. Opt. Electron. 10, 145–154 (2000). doi: 10.1002/1099-0712(200005/10)10:3/5<145::AID-AMO416>3.0.CO;2-2
[73] Holloway, P. H. & McGuire, G. E. Handbook of Compound Semiconductors: Growth, Processing, Characterization, and Devices. (Noyes, New Jersey1995).
[74] Jaggernauth, A., Mendes, J. C. & Silva, R. F. Atomic layer deposition of high-κ layers on polycrystalline diamond for MOS devices: a review. J. Mater. Chem. C. 8, 13127–13153 (2020). doi: 10.1039/D0TC02063J
[75] Maina, J. W. et al. Atomic layer deposition of transition metal films and nanostructures for electronic and catalytic applications. Crit. Rev. Solid State Mater. Sci. https://doi.org/10.1080/10408436.2020.1819200 (2020)
[76] Schlom, D. G. Perspective: oxide molecular-beam epitaxy rocks. APL Mater. 3, 062403 (2015). doi: 10.1063/1.4919763
[77] Ichimiya, A. & Cohen, P. I. Reflection High-Energy Electron Diffraction. (Cambridge University Press, Cambridge, 2004).
[78] Fisher, P. et al. Stoichiometric, nonstoichiometric, and locally nonstoichiometric SrTiO3 films grown by molecular beam epitaxy. J. Appl. Phys. 103, 013519 (2008). doi: 10.1063/1.2827992
[79] Haeni, J. H., Theis, C. D. & Schlom, D. G. RHEED intensity oscillations for the stoichiometric growth of SrTiO3 thin films by reactive molecular beam epitaxy. J. Electroceram. 4, 385–391 (2000). doi: 10.1023/A:1009947517710
[80] Li, Y. P. et al. Interfacial electronic states of misfit heterostructure between hexagonal ZnO and cubic NiO. Phys. Rev. Mater. 4, 124601 (2020). doi: 10.1103/PhysRevMaterials.4.124601
[81] Oshima, M. et al. Combinatorial in situ Growth-and-analysis with synchrotron radiation of thin films for oxide electronics. AIP Conf. Proc. 879, 1667–1670 (2007). doi: 10.1063/1.2436388
[82] Wang, H. Q., Altman, E. I. & Henrich, V. E. Interfacial properties between CoO (100) and Fe3O4 (100). Phys. Rev. B 77, 085313 (2008). doi: 10.1103/PhysRevB.77.085313
[83] Xu, H. C. et al. In situ engineering and characterization on the artificial heterostructures of correlated materials with integrated OMBE–ARPES. J. Electron Spectrosc. Relat. Phenom. 200, 347–355 (2015). doi: 10.1016/j.elspec.2015.06.002
[84] Chikamatsu, A. et al. Band structure and Fermi surface of La0.6Sr0.4MnO3 thin films studied by in situ angle-resolved photoemission spectroscopy. Phys. Rev. B 73, 195105 (2006). doi: 10.1103/PhysRevB.73.195105
[85] Wadati, H. et al. In situ photoemission study of Nd1−xSrxMnO3 epitaxial thin films. Phys. Rev. B 79, 153106 (2009). doi: 10.1103/PhysRevB.79.153106
[86] Tebano, A. et al. Preferential occupation of interface bands in La2/3Sr1/3MnO3 films as seen via angle-resolved photoemission. Phys. Rev. B 82, 214407 (2010). doi: 10.1103/PhysRevB.82.214407
[87] Wadati, H. et al. Strong localization of doped holes in La1−xSrxFeO3 from angle resolved photoemission spectra. Phys. Rev. B 74, 115114 (2006). doi: 10.1103/PhysRevB.74.115114
[88] Aizaki, S. et al. Self-energy on the low- to high-energy electronic structure of correlated metal SrVO3. Phys. Rev. Lett. 109, 056401 (2012). doi: 10.1103/PhysRevLett.109.056401
[89] Yoshimatsu, K. et al. Metallic quantum well states in artificial structures of strongly correlated oxide. Science 333, 319–322 (2011). doi: 10.1126/science.1205771
[90] Chang, Y. J. et al. Layer-by-layer evolution of a two-dimensional electron gas near an oxide interface. Phys. Rev. Lett. 111, 126401 (2013). doi: 10.1103/PhysRevLett.111.126401
[91] Chang, C. C. General formalism for quantitative auger analysis. Surf. Sci. 48, 9–21 (1975). doi: 10.1016/0039-6028(75)90307-6
[92] Wang, H. Q. et al. Studies of the electronic structure at the Fe3O4– NiO interface. J. Vac. Sci. Technol. A 22, 1675–1681 (2004). doi: 10.1116/1.1763900
[93] Wang, H. Q., Altman, E. I. & Henrich, V. E. Measurement of electronic structure at nanoscale solid-solid interfaces by surface-sensitive electron spectroscopy. Appl. Phys. Lett. 92, 012118 (2008). doi: 10.1063/1.2831000
[94] Wang, H. Q. et al. Determination of electronic structure of oxide–oxide interfaces by photoemission spectroscopy. Adv. Mater. 22, 2950–2956 (2010). doi: 10.1002/adma.200903759
[95] Tanuma, S., Powell, C. J. & Penn, D. R. Calculations of electron inelastic mean free paths (IMFPS). Ⅳ. Evaluation of calculated IMFPs and of the predictive IMFP formula TPP-2 for electron energies between 50 and 2000 eV. Surf. Interface Anal. 20, 77–89 (1993). doi: 10.1002/sia.740200112
[96] Tanuma, S., Powell, C. J. & Penn, D. R. Calculations of Electron Inelastic Mean Free Paths (IMFPs) Ⅵ. AnalYsis Of The Gries Inelastic Scattering Model And Predictive IMFP equation. Surf. Interface Anal. 25, 25–35 (1997). doi: 10.1002/(SICI)1096-9918(199701)25:1<25::AID-SIA207>3.0.CO;2-2
[97] Shah, A. B. et al. Probing interfacial electronic structures in atomic layer LaMnO3 and SrTiO3 superlattices. Adv. Mater. 22, 1156–1160 (2010). doi: 10.1002/adma.200904198
[98] van der Zaag, P. J. et al. On the construction of an Fe3O4-based all-oxide spin valve. J. Magn. Magn. Mater. 211, 301–308 (2000). doi: 10.1016/S0304-8853(99)00751-9
[99] van der Heijden, P. A. A. et al. Evidence for roughness driven 90° coupling in Fe3O4/NiO/Fe3O4 trilayers. Phys. Rev. Lett. 82, 1020–1023 (1999). doi: 10.1103/PhysRevLett.82.1020
[100] Borchers, J. A. et al. Polarized neutron diffraction studies of exchange-coupled Fe3O4/NiO superlattices. J. Appl. Phys. 85, 5883–5885 (1999). doi: 10.1063/1.369902
[101] Borchers, J. A. et al. Detection of field-dependent antiferromagnetic domains in exchange-biased Fe3O4/NiO superlattices. Appl. Phys. Lett. 77, 4187–4189 (2000). doi: 10.1063/1.1333684
[102] Terashima, T. & Bando, Y. Formation and magnetic properties of artificial superlattice of CoO-Fe3O4. Thin Solid Films 152, 455–463 (1987). doi: 10.1016/0040-6090(87)90261-6
[103] Fork, D. K., Philips, J. M., Ramesh, R., Wolf, R. M. Epitaxial oxide thin films and heterostructures. In Mater. Res. Soc. Symp. Proc (ed. Pittsburgh, P. A.) 341, 23–28 (1994).
[104] Fadley, C. S. et al. Photoelectron diffraction: new dimensions in space, time, and spin. J. Electron Spectrosc. Relat. Phenom. 75, 273–297 (1995). doi: 10.1016/0368-2048(95)02545-6
[105] Zheng, J. C. et al. Simulations of X-ray photoelectron diffraction experiment from theoretical calculations. Surf. Rev. Lett. 8, 549–557 (2001). doi: 10.1142/S0218625X01001439
[106] Zheng, J. C. et al. Atomic-scale structure of the fivefold surface of an AlPdMn quasicrystal: a quantitative x-ray photoelectron diffraction analysis. Phys. Rev. B 69, 134107 (2004). doi: 10.1103/PhysRevB.69.134107
[107] Zheng, J. C. et al. On the sensitivity of electron and X-ray scattering factors to valence charge distribution. J. Appl. Crystallogr. 38, 648–656 (2005). doi: 10.1107/S0021889805016109
[108] Zheng, J. C., Wu, L. J. & Zhu, Y. M. Aspherical electron scattering factors and their parameterizations for elements from H to Xe. J. Appl. Crystallogr. 42, 1043–1053 (2009). doi: 10.1107/S0021889809033147
[109] Zheng, J. C. et al. Nanoscale disorder and local electronic properties of CaCu3Ti4O12: an integrated study of electron, neutron, and x-ray diffraction, x-ray absorption fine structure, and first-principles calculations. Phys. Rev. B 81, 144203 (2010). doi: 10.1103/PhysRevB.81.144203
[110] Zheng, J. C. & Wang, H. Q. Principles and applications of a comprehensive characterization method combining synchrotron radiation technology, transmission electron microscopy, and density functional theory. Sci. Sin. : Phys., Mech. Astronom. 51, 030007 (2021). doi: 10.1360/SSPMA-2020-0441