[1] Pust, P., Schmidt, P. J. & Schnick, W. A revolution in lighting. Nat. Mater. 14, 454-458 (2015). doi: 10.1038/nmat4270
[2] Pimputkar, S. et al. Prospects for LED lighting. Nat. Photon. 3, 180-182 (2009). doi: 10.1038/nphoton.2009.32
[3] Schubert, E. F. & Kim, J. K. Solid-state light sources getting smart. Science 308, 1274-1278 (2005). doi: 10.1126/science.1108712
[4] Xia, Z. G. & Meijerink, A. Ce3+-Doped garnet phosphors: composition modification, luminescence properties and applications. Chem. Soc. Rev. 46, 275-299 (2017). doi: 10.1039/C6CS00551A
[5] Xia, Z. G. & Liu, Q. L. Progress in discovery and structural design of color conversion phosphors for LEDs. Prog. Mater. Sci. 84, 59-117 (2016). doi: 10.1016/j.pmatsci.2016.09.007
[6] Meyer, J. & Tappe, F. Photoluminescent materials for solid-state lighting: state of the art and future challenges. Adv. Optic. Mat. 3, 424-430 (2015). doi: 10.1002/adom.201400511
[7] Huang, L. et al. HF-free hydrothermal route for synthesis of highly efficient narrow-band red emitting phosphor K2Si1-xF6:xMn4+ for warm white light-emitting diodes. Chem. Mater. 28, 1495-1502 (2016). doi: 10.1021/acs.chemmater.5b04989
[8] Xie, R. J. et al. A simple, efficient synthetic route to Sr2Si5N8:Eu2+-based red phosphors for white light-emitting diodes. Chem. Mater. 18, 5578-5583 (2006). doi: 10.1021/cm061010n
[9] Piao, X. Q. et al. Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties. Chem. Mater. 19, 4592-4599 (2007). doi: 10.1021/cm070623c
[10] Pust, P. et al. Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material. Nat. Mater. 13, 891-896 (2014). doi: 10.1038/nmat4012
[11] Wang, L. et al. Ca1-xLixAl1-xSi1+xN3:Eu2+ solid solutions as broadband, color-tunable and thermally robust red phosphors for superior color rendition white light-emitting diodes. Light Sci. Appl. 5, e16155 (2016). doi: 10.1038/lsa.2016.155
[12] Dai, P. P. et al. A single Eu2+-activated high-color-rendering oxychloride white-light phosphor for white-light-emitting diodes. Light Sci. Appl. 5, e16024 (2016). doi: 10.1038/lsa.2016.24
[13] Strobel, P. et al. Luminescence of an oxonitridoberyllate: a study of narrow-band cyan-emitting Sr[Be6ON4]:Eu2+. Chem. Mater. 30, 3122-3130 (2018). doi: 10.1021/acs.chemmater.8b01256
[14] Ohno, Y. Color rendering and luminous efficacy of white LED spectra. In Proc. the SPIE 49th Annual Meeting 5530, 88-98 (SPIE, Denver, Colorado, 2004).
[15] Phillips, J. M. et al. Research challenges to ultra-efficient inorganic solid-state lighting. Laser Phot. Rev. 1, 307-333 (2007). doi: 10.1002/lpor.200710019
[16] Li, Y. Q. et al. Luminescence properties of Eu2+-activated alkaline-earth silicon-oxynitride MSi2O2-δN2+2/3δ (M = Ca, Sr, Ba): a promising class of novel LED conversion phosphors. Chem. Mater. 17, 3242-3248 (2005). doi: 10.1021/cm050175d
[17] Zhao, M. et al. Discovery of new narrow-band phosphors with the UCr4C4-related type structure by alkali cation effect. Adv. Optic. Mat. 7, 1801631 (2019). doi: 10.1002/adom.201801631
[18] Xia, Z. G. et al. Chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1-xMgx)(Al1-xSi1+x)O7:Eu2+ phosphor. J. Am. Chem. Soc. 137, 12494-12497 (2015). doi: 10.1021/jacs.5b08315
[19] Strobel, P. et al. Ultra-narrow-band blue-emitting oxoberyllates AELi2[Be4O6]:Eu2+ (AE = Sr, Ba) paving the way to efficient RGB pc-LEDs. Angew. Chem. Int. Ed. 130, 8875-8879 (2018). doi: 10.1002/ange.201804721
[20] Strobel, P. et al. Narrow-band green emitting nitridolithoalumosilicate Ba[Li2(Al2Si2)N6]:Eu2+ with framework topology whj for LED/LCD-backlighting applications. Chem. Mater. 27, 6109-6115 (2015). doi: 10.1021/acs.chemmater.5b02702
[21] Strobel, P. et al. Sr[BeSi2N4]:Eu2+/Ce3+ and Eu[BeSi2N4]: nontypical luminescence in highly condensed nitridoberyllosilicates. Chem.-Eur. J 24, 7243-7249 (2018). doi: 10.1002/chem.201800912
[22] Liao, H. X. et al. Learning from a mineral structure toward an ultra-narrow-band blue-emitting silicate phosphor RbNa3(Li3SiO4)4:Eu2+. Angew. Chem. Int. Ed. 130, 11902-11905 (2018). doi: 10.1002/ange.201807087
[23] Zhao, M. et al. Next-generation narrow-band green-emitting RbLi(Li3SiO4)2:Eu2+ phosphor for backlight display application. Adv. Mat. 30, 1802489 (2018). doi: 10.1002/adma.201802489
[24] Dutzler, D. et al. Alkali lithosilicates: renaissance of a reputable substance class with surprising luminescence properties. Angew. Chem. Int. Ed. 57, 13676-13680 (2018). doi: 10.1002/anie.201808332
[25] Wang, S. X. et al. Crystal field splitting of 4fn-15d-levels of Ce3+ and Eu2+ in nitride compounds. J. Lumin. 194, 461-466 (2018). doi: 10.1016/j.jlumin.2017.10.073
[26] Hoffmann, J., Brandes, R. & Hoppe, R. Neue silicate mit „stuffed pyrgoms": CsKNaLi9{Li[SiO4]}4, CsKNa2Li8{Li[SiO4]}4, RbNa3Li8{Li[SiO4]}4[1] und RbNaLi4{Li[SiO4]}2[2]. Z. Anorg. Allg. Chem. 620, 1495-1508 (1994).
[27] Blasse, G. & Grabmaier, B. C. Luminescent materials (Springer, Berlin Heidelberg, 1994).
[28] Van Uitert, L. G. An empirical relation fitting the position in energy of the lower d-band edge for Eu2+ OR Ce3+ in various compounds. J. Lumin. 29, 1-9 (1984). doi: 10.1016/0022-2313(84)90036-X
[29] Kim, Y. H. et al. A zero-thermal-quenching phosphor. Nat. Mater. 16, 543-550 (2017). doi: 10.1038/nmat4843
[30] Blasse, G. Thermal quenching of characteristic fluorescence. J. Chem. Phys. 51, 3529-3530 (1969). doi: 10.1063/1.1672543
[31] Denault, K. A. et al. Average and local structure, Debye temperature, and structural rigidity in some oxide compounds related to phosphor hosts. ACS Appl. Mater. Interfaces 7, 7264-7272 (2015). doi: 10.1021/acsami.5b00445