[1] |
Sandtke, M. & Kuipers, L. Slow guided surface plasmons at telecom frequencies. Nat. Photonics 1, 573–576 (2007). doi: 10.1038/nphoton.2007.174 |
[2] |
Berini, P. & De Leon, I. Surface plasmon–polariton amplifiers and lasers. Nat. Photonics 6, 16–24 (2012). doi: 10.1038/nphoton.2011.285 |
[3] |
Zhang, J. J. et al. Spoof plasmon hybridization. Laser Photonics Rev. 11, 1600191 (2017). doi: 10.1002/lpor.201600191 |
[4] |
Zhu, Y., Hu, X. Y., Yang, H. & Gong, Q. H. On-chip plasmon-induced transparency based on plasmonic coupled nanocavities. Sci. Rep. 4, 3752 (2014). doi: 10.1038/srep03752 |
[5] |
Pan, B. C., Zhang, H. C. & Cui, T. J. Multilayer transmissions of spoof surface Plasmon polaritons for multifunctional applications. Adv. Mater. Technol. 2, 1600159 (2017). doi: 10.1002/admt.201600159 |
[6] |
Camden, J. P., Dieringer, J. A., Zhao, J. & Van Duyne, R. P. Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing. ACC Chem. Res. 41, 1653–1661 (2008). doi: 10.1021/ar800041s |
[7] |
Vesseur, E. J. R., de Waele, R., Kuttge, M. & Polman, A. Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence spectroscopy. Nano Lett. 7, 2843–2846 (2007). doi: 10.1021/nl071480w |
[8] |
Li, D. B. & Stockman, M. I. Electric spaser in the extreme quantum limit. Phys. Rev. Lett. 110, 106803 (2013). doi: 10.1103/PhysRevLett.110.106803 |
[9] |
Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009). doi: 10.1038/nature08364 |
[10] |
Pala, R. A., White, J., Barnard, E., Liu, J. & Brongersma, M. L. Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv. Mater. 21, 3504–3509 (2009). doi: 10.1002/adma.200900331 |
[11] |
Su, Y. H., Ke, Y. F., Cai, S. L. & Yao, Q. Y. Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell. Light Sci. Appl. 1, e14–e14 (2012). doi: 10.1038/lsa.2012.14 |
[12] |
Brongersma, M. L., Halas, N. J. & Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25–34 (2015). doi: 10.1038/nnano.2014.311 |
[13] |
Knight, M. W. et al. Embedding plasmonic nanostructure diodes enhances hot electron emission. Nano Lett. 13, 1687–1692 (2013). doi: 10.1021/nl400196z |
[14] |
Kabashin, A. V. et al. Plasmonic nanorod metamaterials for biosensing. Nat. Mater. 8, 867–871 (2009). doi: 10.1038/nmat2546 |
[15] |
Henzie, J., Lee, M. H. & Odom, T. W. Multiscale patterning of plasmonic metamaterials. Nat. Nanotechnol. 2, 549–554 (2007). doi: 10.1038/nnano.2007.252 |
[16] |
Zhang, W. H. et al. Giant and uniform fluorescence enhancement over large areas using plasmonic nanodots in 3D resonant cavity nanoantenna by nanoimprinting. Nanotechnology 23, 225301 (2012). doi: 10.1088/0957-4484/23/22/225301 |
[17] |
Ding, K. & Ning, C. Z. Metallic subwavelength-cavity semiconductor nanolasers. Light Sci. Appl. 1, e20–e20 (2012). doi: 10.1038/lsa.2012.20 |
[18] |
Lin, K. T., Chen, H. L., Lai, Y. S. & Yu, C. C. Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths. Nat. Commun. 5, 3288 (2014). doi: 10.1038/ncomms4288 |
[19] |
Li, X. E., Jiang, T., Shen, L. F. & Deng, X. H. Subwavelength guiding of channel plasmon polaritons by textured metallic grooves at telecom wavelengths. Appl. Phys. Lett. 102, 031606 (2013). doi: 10.1063/1.4789440 |
[20] |
Sobhani, A. et al. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nat. Commun. 4, 1643 (2013). doi: 10.1038/ncomms2642 |
[21] |
Li, W. & Valentine, J. Metamaterial perfect absorber based hot electron photodetection. Nano. Lett. 14, 3510–3514 (2014). doi: 10.1021/nl501090w |
[22] |
Ji, D. X. et al. Broadband absorption engineering of hyperbolic metafilm patterns. Sci. Rep. 4, 4498 (2014). doi: 10.1038/srep04498 |
[23] |
Lee, K. T., Seo, S. Y. & Guo, L. J. High-color-purity subtractive color filters with a wide viewing angle based on plasmonic perfect absorbers. Adv. Opt. Mater. 3, 347–352 (2015). doi: 10.1002/adom.201400533 |
[24] |
Bozhevolnyi, S. I. & Søndergaard, T. General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators. Opt. Express 15, 10869–10877 (2007). doi: 10.1364/OE.15.010869 |
[25] |
Oulton, R. F., Sorger, V. J., Genov, D. A., Pile, D. F. P. & Zhang, X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photonics 2, 496–500 (2008). doi: 10.1038/nphoton.2008.131 |
[26] |
Vecchi, G., Giannini, V. & Rivas, J. G. Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas. Phys. Rev. Lett. 102, 146807 (2009). doi: 10.1103/PhysRevLett.102.146807 |
[27] |
Rodriguez, S. R. K. et al. Coupling bright and dark plasmonic lattice resonances. Phys. Rev. X 1, 021019 (2011). |
[28] |
Todisco, F. et al. Toward cavity quantum electrodynamics with hybrid photon gap-Plasmon states. ACS Nano 10, 11360–11368 (2016). doi: 10.1021/acsnano.6b06611 |
[29] |
Seok, T. J. et al. Radiation engineering of optical antennas for maximum field enhancement. Nano Lett. 11, 2606–2610 (2011). doi: 10.1021/nl2010862 |
[30] |
Wang, J. F. et al. Hybrid plasmonic cavity modes in arrays of gold nanotubes. Adv. Opt. Mater. 5, 1600731 (2017). doi: 10.1002/adom.201600731 |
[31] |
Lyvers, D. P., Moon, J. M., Kildishev, A. V., Shalaev, V. M. & Wei, A. Gold nanorod arrays as plasmonic cavity resonators. ACS Nano 2, 2569–2576 (2008). doi: 10.1021/nn8006477 |
[32] |
Song, H. J. et al. Near-field coupling and resonant cavity modes in plasmonic nanorod metamaterials. Nanotechnology 27, 415708 (2016). doi: 10.1088/0957-4484/27/41/415708 |
[33] |
Wang, P. et al. Single-band 2‑nm-line-width plasmon resonance in a strongly coupled Au nanorod. Nano Lett. 15, 7581–7586 (2015). doi: 10.1021/acs.nanolett.5b03330 |
[34] |
Liu, X. Y. et al. Hybrid plasmonic modes in multilayer trench grating structures. Adv. Opt. Mater. 5, 1700496 (2017). doi: 10.1002/adom.201700496 |
[35] |
Hu, F. F., Yi, H. X. & Zhou, Z. P. Band-pass plasmonic slot filter with band selection and spectrally splitting capabilities. Opt. Express 19, 4848–4855 (2011). doi: 10.1364/OE.19.004848 |
[36] |
Bora, M. et al. Plasmonic black metals in resonant nanocavities. Appl. Phys. Lett. 102, 251105 (2013). doi: 10.1063/1.4802910 |
[37] |
Li, Z. Y., Butun, S. & Aydin, K. Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces. ACS Nano 8, 8242–8248 (2014). doi: 10.1021/nn502617t |
[38] |
Campione, S. et al. Broken symmetry dielectric resonators for high quality factor fano metasurfaces. ACS Photonics 3, 2362–2367 (2016). doi: 10.1021/acsphotonics.6b00556 |
[39] |
Yang, J. et al. Ultrasmall metal-insulator-metal nanoresonators: impact of slow-wave effects on the quality factor. Opt. Express 20, 16880–16891 (2012). doi: 10.1364/OE.20.016880 |
[40] |
Vlasov, Y. A. & McNab, S. J. Losses in single-mode silicon-on-insulator strip waveguides and bends. Opt. Express 12, 1622–1631 (2004). doi: 10.1364/OPEX.12.001622 |
[41] |
Hamam, R. E., Karalis, A., Joannopoulos, J. D. & Soljačić, M. Coupled-mode theory for general free-space resonant scattering of waves. Phys. Rev. A 75, 053801 (2007). doi: 10.1103/PhysRevA.75.053801 |
[42] |
Kristensen, P. T., Van Vlack, C. & Hughes, S. Generalized effective mode volume for leaky optical cavities. Opt. Lett. 37, 1649–1651 (2012). doi: 10.1364/OL.37.001649 |
[43] |
Sauvan, C., Hugonin, J. P., Maksymov, I. S. & Lalanne, P. Theory of the spontaneous optical emission of nanosize photonic and Plasmon resonators. Phys. Rev. Lett. 110, 237401 (2013). doi: 10.1103/PhysRevLett.110.237401 |