[1] Tyson, R. K. Adaptive Optics Engineering Handbook (New York: Dekker, 1999).
[2] Conan, J. M., Rousset, G. & Madec, P. Y. Wave-front temporal spectra in high-resolution imaging through turbulence. Journal of the Optical Society of America 12, 1559-1570 (1995).
[3] Platt, B. C. & Shack, R. History and principles of Shack-Hartmann wavefront sensing. Journal of Refractive Surgery 17, S573-S577 (2001).
[4] Ragazzoni, R. Pupil plane wavefront sensing with an oscillating prism. Journal of Modern Optics 43, 289-293 (1996). doi: 10.1080/09500349608232742
[5] Roddier, F. Curvature sensing and compensation: a new concept in adaptive optics. Applied Optics 27, 1223-1225 (1988). doi: 10.1364/AO.27.001223
[6] Murty, M. V. R. K. The Use of a Single Plane Parallel Plate as a Lateral Shearing Interferometer with a Visible Gas Laser Source. Applied Optics 3, 531-534 (1964). doi: 10.1364/AO.3.000531
[7] Wu, C. S., Ko, J. & Davis, C. C. Lossy wavefront sensing and correction of distorted laser beams. Applied Optics 59, 817-824 (2020). doi: 10.1364/AO.59.000817
[8] Vorontsov, M. A. & Sivokon, V. P. Stochastic parallel-gradient-descent technique for high-resolution wave-front phase-distortion correction. Journal of the Optical Society of America 15, 2745-2758 (1998). doi: 10.1364/JOSAA.15.002745
[9] Segel, M. & Gladysz, S. Optimal, blind-search modal wavefront correction in atmospheric turbulence part I: simulations. Optics Express 29, 805-820 (2021). doi: 10.1364/OE.408682
[10] Solovev, M. A. & Venediktov, V. Y. Holographic wavefront sensors: state of the art and prospects. Proceedings of SPIE 9508, Holography: Advances and Modern Trends IV. Prague, Czech Republic: SPIE 2015.
[11] Gabor, D. Holography - the reconstruction of wavefronts. Electronics & Power 12, 230-234 (1966).
[12] Zepp, A., Gładysz, S. & Stein, K. Holographic wavefront sensor for fast defocus measurement. Advanced Optical Technologies 2, 433-437 (2013).
[13] Palomo, P. M., Zepp, A. & Gladysz, S. Characterization of the digital holographic wavefront sensor. Proceedings of SPIE 9242, Remote Sensing of Clouds and the Atmosphere XIX; and Optics in Atmospheric Propagation and Adaptive Systems XVII. Amsterdam, Netherlands: SPIE, 2014.
[14] Andersen, G., Ghebremichael, F., Gaddipati, R. & Gaddipati, P. Fast computer-free holographic adaptive optics. Proceedings of SPIE 8447, Adaptive Optics Systems III. Amsterdam, Netherlands: SPIE, 2012.
[15] Ghebremichael, F., Andersen, G. P. & Gurley, K. S. Holography-based wavefront sensing. Applied Optics 47, A62-A69 (2008). doi: 10.1364/AO.47.000A62
[16] Kovalev, M. S. et al. Measurement of wavefront curvature using computer-generated holograms. Optics Express 27, 1563-1568 (2019). doi: 10.1364/OE.27.001563
[17] Lugt, A. V. Signal Detection By Complex Spatial Filtering. IEEE Transactions on Information Theory 10, 139-145 (1964). doi: 10.1109/TIT.1964.1053650
[18] Gorelaya, A., Orlov, V. & Venediktov, V. Holographic wavefront sensor, based on diffuse Fourier holography. Proceedings of SPIE 10425, Optics in Atmospheric Propagation and Adaptive Systems XX. Warsaw, Poland: SPIE, 2017.
[19] Dong, S. et al. Response analysis and experimental results of holography-based modal Zernike wavefront sensor. Proceedings of SPIE 8165, Unconventional Imaging, Wavefront Sensing, and Adaptive Coded Aperture Imaging and Non-Imaging Sensor Systems. San Diego, California, United States: SPIE, 2011.
[20] Neil, M. A. A., Booth, M. J. & Wilson, T. New modal wave-front sensor: a theoretical analysis. Journal of the Optical Society of America 17, 1098-1107 (2000).
[21] Yao, K. N. et al. Closed-loop adaptive optics system with a single liquid crystal spatial light modulator. Optics Express 22, 17216-17226 (2014). doi: 10.1364/OE.22.017216
[22] Kong, F. P. & Lambert, A. Improvements to the modal holographic wavefront sensor. Applied Optics 55, 3615-3625 (2016). doi: 10.1364/AO.55.003615
[23] Konwar, S. & Boruah, B. R. Improved linear response in a modal wavefront sensor. Journal of the Optical Society of America 36, 741-750 (2019). doi: 10.1364/JOSAA.36.000741
[24] Dong, S. H., Haist, T. & Osten, W. Hybrid wavefront sensor for the fast detection of wavefront disturbances. Applied Optics 51, 6268-6274 (2012). doi: 10.1364/AO.51.006268
[25] Dong, S. H. et al. Hybrid curvature and modal wavefront sensor. Proceedings of SPIE 9227, Unconventional Imaging and Wavefront Sensing 2014. San Diego, California, United States: SPIE, 2014.
[26] Neil, M. A. A., Booth, M. J. & Wilson, T. Closed-loop aberration correction by use of a modal Zernike wave-front sensor. Optics Letters 25, 1083-1085 (2000). doi: 10.1364/OL.25.001083
[27] Andersen, G. et al. Fast, compact, autonomous holographic adaptive optics. Optics Express 22, 9432-9441 (2014). doi: 10.1364/OE.22.009432
[28] Yao, K. N. et al. Analysis of a holographic laser adaptive optics system using a deformable mirror. Applied Optics 56, 6639-6648 (2017). doi: 10.1364/AO.56.006639
[29] Zepp, A. et al. Optimization of the holographic wavefront sensor for open-loop adaptive optics under realistic turbulence. Part I: simulations. Applied Optics 60, F88-F98 (2021). doi: 10.1364/AO.425397
[30] Ribak, E. & Ebstein, S. A fast modal wave-front sensor. Optics Express 9, 152-157 (2001). doi: 10.1364/OE.9.000152
[31] Booth, M. J. Direct measurement of Zernike aberration modes with a modal wavefront sensor. Proceedings of SPIE 5162, Advanced Wavefront Control: Methods, Devices, and Applications. San Diego, California, United States: SPIE, 2003.
[32] Liu, C. H. et al. Performance analysis of multiplexed phase computer-generated hologram for modal wavefront sensing. Applied Optics 50, 1631-1639 (2011). doi: 10.1364/AO.50.001631
[33] Noll, R. J. Zernike polynomials and atmospheric turbulence. Journal of the Optical Society of America 66, 207-211 (1976). doi: 10.1364/JOSA.66.000207
[34] Roddier, F. Adaptive Optics in Astronomy. (Cambridge: Cambridge University Press, 1999).
[35] Schottky, W. Small-shot effect and flicker effect. Physical Review 28, 74-103 (1926). doi: 10.1103/PhysRev.28.74
[36] Dai, G. M. Modal wave-front reconstruction with Zernike polynomials and Karhunen–Loève functions. Journal of the Optical Society of America 13, 1218-1225 (1996). doi: 10.1364/JOSAA.13.001218
[37] Dai, G. M. Modal compensation of atmospheric turbulence with the use of Zernike polynomials and Karhunen–Loève functions. Journal of the Optical Society of America 12, 2182-2193 (1995). doi: 10.1364/JOSAA.12.002182
[38] Anzuola, E., Zepp, A., Gladysz, S. & Stein, K. Holographic wavefront sensor based on Karhunen-Loève decomposition. Proceedings of SPIE 9979, Laser Communication and Propagation through the Atmosphere and Ocean V. San Diego, California, United States: SPIE, 2016.
[39] Scharmer, G. B. et al. Adaptive optics system for the new Swedish solar telescope. Proceedings of SPIE 4853, Innovative Telescopes and Instrumentation for Solar Astrophysics. Waikoloa, Hawai’i, United States: SPIE, 2003.
[40] Banet, M. T. & Spencer, M. F. Compensated-beacon adaptive optics using least-squares phase reconstruction. Optics Express 28, 36902-36914 (2020). doi: 10.1364/OE.409134
[41] Kulcsár, C. et al. Optimal control, observers and integrators in adaptive optics. Optics Express 14, 7464-7476 (2006). doi: 10.1364/OE.14.007464
[42] Roddier, F., Gilli, J. M. & Lund, G. On the origin of speckle boiling and its effects in stellar speckle interferometry. Journal of Optics 13, 263-271 (1982). doi: 10.1088/0150-536X/13/5/002
[43] Montoya, L. et al. Modeling day time turbulence profiles: Application to teide observatory. Proceeding of the Adaptive Optics for Extremely Large Telescopes 5. 2017.
[44] Zhang, X. F. & Wang, L. Q. Improvement in the performance of solar adaptive optics. Research in Astronomy and Astrophysics 14, 471-484 (2014). doi: 10.1088/1674-4527/14/4/008
[45] García-Lorenzo, B. et al. Astronomical site ranking based on tropospheric wind statistics. Monthly Notices of the Royal Astronomical Society 356, 849-858 (2005). doi: 10.1111/j.1365-2966.2004.08542.x
[46] McGlamery, B. L. Computer simulation studies of compensation of turbulence degraded images. Proceedings of SPIE 0074, Image Processing. Pacific Grove, United States: SPIE, 1976.
[47] Iftekharuddin, K. M. & Awwal, A. Field Guide to Image Processing (Bellingham: SPIE Press, 2012).
[48] Roberts, Jr., L. C. et al. Is that really your Strehl ratio?. Proceedings of SPIE 5490, Advancements in Adaptive Optics. Glasgow, United Kingdom: SPIE, 2004.
[49] Roddier, N. A. Atmospheric wavefront simulation using Zernike polynomials. Optical Engineering 29, 1174-1180 (1990). doi: 10.1117/12.55712
[50] Tyson, R. K. Principles of adaptive optics. 4th edn. (Boca Raton: CRC Press, 2015).
[51] Levine, B. M. et al. Horizontal line-of-sight turbulence over near-ground paths and implications for adaptive optics corrections in laser communications. Applied Optics 37, 4553-4560 (1998). doi: 10.1364/AO.37.004553