| [1] | Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81-85 (2018). doi: 10.1038/s41586-018-0065-7 |
| [2] | Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52-58 (2021). doi: 10.1038/s41586-020-03070-1 |
| [3] | Atabaki, A. H. et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature 556, 349-354 (2018). doi: 10.1038/s41586-018-0028-z |
| [4] | Sun, C. et al. Single-chip microprocessor that communicates directly using light. Nature 528, 534-538 (2015). doi: 10.1038/nature16454 |
| [5] | Yang, Z. Y. et al. Single-nanowire spectrometers. Science 365, 1017-1020 (2019). doi: 10.1126/science.aax8814 |
| [6] | Liu, J. Q. et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nature Communications 12, 2236 (2021). doi: 10.1038/s41467-021-21973-z |
| [7] | Yang, Z. Y. et al. Miniaturization of optical spectrometers. Science 371, eabe0722 (2021). doi: 10.1126/science.abe0722 |
| [8] | Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nature Photonics 13, 158-169 (2019). doi: 10.1038/s41566-019-0358-x |
| [9] | Xiang, C. et al. Laser soliton microcombs heterogeneously integrated on silicon. Science 373, 99-103 (2021). doi: 10.1126/science.abh2076 |
| [10] | Guidry, M. A. et al. Quantum optics of soliton microcombs. Nature Photonics 16, 52-58 (2022). doi: 10.1038/s41566-021-00901-z |
| [11] | Liu, X. W. et al. Aluminum nitride nanophotonics for beyond-octave soliton microcomb generation and self-referencing. Nature Communications 12, 5428 (2021). doi: 10.1038/s41467-021-25751-9 |
| [12] | Chang, L. et al. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators. Nature Communications 11, 1331 (2020). doi: 10.1038/s41467-020-15005-5 |
| [13] | Zhang, M. et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 568, 373-377 (2019). doi: 10.1038/s41586-019-1008-7 |
| [14] | Chen, G. Y. et al. Advances in lithium niobate photonics: development status and perspectives. Advanced Photonics 4, 034003 (2022). |
| [15] | Eggleton, B. J. et al. Brillouin integrated photonics. Nature Photonics 13, 664-677 (2019). doi: 10.1038/s41566-019-0498-z |
| [16] | Eggleton, B. J., Luther-Davies, B. & Richardson, K. Chalcogenide photonics. Nature Photonics 5, 141-148 (2011). doi: 10.1038/nphoton.2011.309 |
| [17] | Büttner, T. F. S. et al. Phase-locked, chip-based, cascaded stimulated Brillouin scattering. Optica 1, 311-314 (2014). doi: 10.1364/OPTICA.1.000311 |
| [18] | Giacoumidis, E. et al. Chip-based Brillouin processing for carrier recovery in self-coherent optical communications. Optica 5, 1191-1199 (2018). doi: 10.1364/OPTICA.5.001191 |
| [19] | Gao, J. N. et al. Near-infrared to ultra-violet frequency conversion in chalcogenide metasurfaces. Nature Communications 12, 5833 (2021). doi: 10.1038/s41467-021-26094-1 |
| [20] | Petersen, C. R. et al. Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nature Photonics 8, 830-834 (2014). |
| [21] | Zhang, W. et al. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nature Reviews Materials 4, 150-168 (2019). doi: 10.1038/s41578-018-0076-x |
| [22] | Wang, S. K. et al. Chalcogenide glass IR artificial compound eyes based on femtosecond laser microfabrication. Advanced Materials Technologies 8, 2200741 (2023). doi: 10.1002/admt.202200741 |
| [23] | Asobe, M. et al. Third‐order nonlinear spectroscopy in As2S3 chalcogenide glass fibers. Journal of Applied Physics 77, 5518-5523 (1995). doi: 10.1063/1.359256 |
| [24] | Wan, L. et al. Highly efficient acousto-optic modulation using nonsuspended thin-film lithium niobate-chalcogenide hybrid waveguides. Light:Science & Applications 11, 145 (2022). |
| [25] | Zhang, Y. F. et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nature Communications 10, 4279 (2019). doi: 10.1038/s41467-019-12196-4 |
| [26] | Zhang, Y. F. et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nature Nanotechnology 16, 661-666 (2021). doi: 10.1038/s41565-021-00881-9 |
| [27] | Yu, Y. et al. Experimental demonstration of linearly polarized 2–10 μm supercontinuum generation in a chalcogenide rib waveguide. Optics Letters 41, 958-961 (2016). doi: 10.1364/OL.41.000958 |
| [28] | Xia, D. et al. On-chip broadband mid-infrared supercontinuum generation based on highly nonlinear chalcogenide glass waveguides. Frontiers in Physics 9, 598091 (2021). doi: 10.3389/fphy.2021.598091 |
| [29] | Broaddus, D. H. et al. Silicon-waveguide-coupled high-Q chalcogenide microspheres. Optics Express 17, 5998-6003 (2009). doi: 10.1364/OE.17.005998 |
| [30] | Zhang, B. et al. On-chip chalcogenide microresonators with low-threshold parametric oscillation. Photonics Research 9, 1272-1279 (2021). doi: 10.1364/PRJ.422435 |
| [31] | Morrison, B. et al. Compact Brillouin devices through hybrid integration on silicon. Optica 4, 847-854 (2017). doi: 10.1364/OPTICA.4.000847 |
| [32] | Hô, N. et al. Photosensitivity of As2S3 chalcogenide thin films at 1.5 µm. Optics Letters 28, 965-967 (2003). |
| [33] | Knotek, P. et al. On the ultraviolet light induced oxidation of amorphous As2S3 film. Thin Solid Films 520, 5472-5478 (2012). doi: 10.1016/j.tsf.2012.03.116 |
| [34] | Xia, D. et al. Integrated chalcogenide photonics for microresonator soliton combs. Laser & Photonics Reviews 17, 2200219 (2023). |
| [35] | Wang, T. et al. Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses. Optical Materials Express 4, 1011-1022 (2014). doi: 10.1364/OME.4.001011 |
| [36] | Lihachev, G. et al. Platicon microcomb generation using laser self-injection locking. Nature Communications 13, 1771 (2022). doi: 10.1038/s41467-022-29431-0 |
| [37] | Pu, M. H. et al. Ultra‐Efficient and broadband nonlinear AlGaAs‐on‐insulator chip for low‐power optical signal processing. Laser & Photonics Reviews 12, 1800111 (2018). |
| [38] | Xia, D. et al. Engineered Raman lasing in photonic integrated chalcogenide microresonators. Laser & Photonics Reviews 16, 2100443 (2022). |
| [39] | Gundavarapu, S. et al. Sub-hertz fundamental linewidth photonic integrated Brillouin laser. Nature Photonics 13, 60-67 (2019). doi: 10.1038/s41566-018-0313-2 |
| [40] | Ji, X. C. et al. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica 4, 619-624 (2017). doi: 10.1364/OPTICA.4.000619 |
| [41] | Kim, D. G. et al. Universal light-guiding geometry for on-chip resonators having extremely high Q-factor. Nature Communications 11, 5933 (2020). doi: 10.1038/s41467-020-19799-2 |
| [42] | Yu, M. J. et al. Raman lasing and soliton mode-locking in lithium niobate microresonators. Light:Science & Applications 9, 9 (2020). |
| [43] | Madden, S. J. et al. Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration. Optics Express 15, 14414-14421 (2007). doi: 10.1364/OE.15.014414 |
| [44] | Zhang, B. et al. High brightness 2.2–12 µm mid-infrared supercontinuum generation in a nontoxic chalcogenide step‐index fiber. Journal of the American Ceramic Society 99, 2565-2568 (2016). |
| [45] | Riemensberger, J. et al. A photonic integrated continuous-travelling-wave parametric amplifier. Nature 612, 56-61 (2022). doi: 10.1038/s41586-022-05329-1 |
| [46] | Ye, Z. C. et al. Overcoming the quantum limit of optical amplification in monolithic waveguides. Science Advances 7, eabi8150 (2021). doi: 10.1126/sciadv.abi8150 |
| [47] | Morrison, B. et al. Tunable microwave photonic notch filter using on-chip stimulated Brillouin scattering. Optics Communications 313, 85-89 (2014). doi: 10.1016/j.optcom.2013.09.065 |
| [48] | Marpaung, D. et al. Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity. Optica 2, 76-83 (2015). doi: 10.1364/OPTICA.2.000076 |
| [49] | Lin, H. T. et al. Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators. Optics Letters 38, 1470-1472 (2013). doi: 10.1364/OL.38.001470 |
| [50] | Zhang, R. Z. et al. High quality, high index-contrast chalcogenide microdisk resonators. Optics Express 29, 17775-17783 (2021). doi: 10.1364/OE.427054 |
| [51] | Zhu, Y. et al. Effects of shallow suspension in low-loss waveguide-integrated chalcogenide microdisk resonators. Journal of Lightwave Technology 38, 4817-4823 (2020). |
| [52] | Du, Q. Y. et al. Low-loss photonic device in Ge–Sb–S chalcogenide glass. Optics Letters 41, 3090-3093 (2016). doi: 10.1364/OL.41.003090 |
| [53] | Yang, Z. et al. High-Q, submicron-confined chalcogenide microring resonators. Optics Express 29, 33225-33233 (2021). doi: 10.1364/OE.434808 |
| [54] | Jean, P. et al. Etchless chalcogenide microresonators monolithically coupled to silicon photonic waveguides. Optics Letters 45, 2830-2833 (2020). doi: 10.1364/OL.392879 |
| [55] | Gai, X. et al. Dispersion engineered Ge115As24Se64. 5 nanowires with a nonlinear parameter of 136W−1m−1 at 1550 nm. Optics Express 18, 18866-18874 (2010). doi: 10.1364/OE.18.018866 |
| [56] | Serna, S. et al. Nonlinear optical properties of integrated GeSbS chalcogenide waveguides. Photonics Research 6, B37-B42 (2018). doi: 10.1364/PRJ.6.000B37 |
| [57] | Ma, P. et al. Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared. Optics Express 21, 29927-29937 (2013). doi: 10.1364/OE.21.029927 |
| [58] | Shen, W. H. et al. Chalcogenide glass photonic integration for improved 2 µm optical interconnection. Photonics Research 8, 1484-1490 (2020). doi: 10.1364/PRJ.398957 |
| [59] | Hô, N. et al. Single-mode low-loss chalcogenide glass waveguides for the mid-infrared. Optics Letters 31, 1860-1862 (2006). doi: 10.1364/OL.31.001860 |
| [60] | Jin, T. N. et al. Mid-infrared chalcogenide waveguides for real-time and nondestructive volatile organic compound detection. Analytical Chemistry 91, 817-822 (2019). doi: 10.1021/acs.analchem.8b03004 |
| [61] | Newman, Z. L. et al. Architecture for the photonic integration of an optical atomic clock. Optica 6, 680-685 (2019). doi: 10.1364/OPTICA.6.000680 |
| [62] | Del'Haye, P. et al. Phase-coherent microwave-to-optical link with a self-referenced microcomb. Nature Photonics 10, 516-520 (2016). doi: 10.1038/nphoton.2016.105 |
| [63] | Papp, S. B. et al. Microresonator frequency comb optical clock. Optica 1, 10-14 (2014). doi: 10.1364/OPTICA.1.000010 |
| [64] | Drake, T. E. et al. Terahertz-rate Kerr-microresonator optical clockwork. Physical Review X 9, 031023 (2019). |
| [65] | Geng, Y. et al. Coherent optical communications using coherence-cloned Kerr soliton microcombs. Nature Communications 13, 1070 (2022). doi: 10.1038/s41467-022-28712-y |
| [66] | Fülöp, A. et al. High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators. Nature Communications 9, 1598 (2018). doi: 10.1038/s41467-018-04046-6 |
| [67] | Hu, H. et al. Single-source chip-based frequency comb enabling extreme parallel data transmission. Nature Photonics 12, 469-473 (2018). doi: 10.1038/s41566-018-0205-5 |
| [68] | Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274-279 (2017). doi: 10.1038/nature22387 |
| [69] | Lundberg, L. et al. Phase-coherent lightwave communications with frequency combs. Nature Communications 11, 201 (2020). doi: 10.1038/s41467-019-14010-7 |
| [70] | Liu, J. Q. et al. Photonic microwave generation in the X-and K-band using integrated soliton microcombs. Nature Photonics 14, 486-491 (2020). doi: 10.1038/s41566-020-0617-x |
| [71] | Bao, C. Y. et al. Architecture for microcomb-based GHz-mid-infrared dual-comb spectroscopy. Nature Communications 12, 6573 (2021). doi: 10.1038/s41467-021-26958-6 |
| [72] | Guo, H. R. et al. Nanophotonic supercontinuum-based mid-infrared dual-comb spectroscopy. Optica 7, 1181-1188 (2020). doi: 10.1364/OPTICA.396542 |
| [73] | Dutt, A. et al. On-chip dual-comb source for spectroscopy. Science Advances 4, e1701858 (2018). doi: 10.1126/sciadv.1701858 |
| [74] | Suh, M. G. et al. Microresonator soliton dual-comb spectroscopy. Science 354, 600-603 (2016). doi: 10.1126/science.aah6516 |
| [75] | Liang, Q. Z. et al. Ultrasensitive multispecies spectroscopic breath analysis for real-time health monitoring and diagnostics. Proceedings of the National Academy of Sciences of the United States of America 118, e2105063118 (2021). |
| [76] | Riemensberger, J. et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature 581, 164-170 (2020). doi: 10.1038/s41586-020-2239-3 |
| [77] | Trocha, P. et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science 359, 887-891 (2018). doi: 10.1126/science.aao3924 |
| [78] | Jin, W. et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nature Photonics 15, 346-353 (2021). doi: 10.1038/s41566-021-00761-7 |
| [79] | Zhang, S. Y. et al. Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser. Optica 6, 206-212 (2019). doi: 10.1364/OPTICA.6.000206 |
| [80] | Luke, K. et al. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator. Optics Letters 40, 4823-4826 (2015). doi: 10.1364/OL.40.004823 |
| [81] | Griffith, A. G. et al. Silicon-chip mid-infrared frequency comb generation. Nature Communications 6, 6299 (2015). doi: 10.1038/ncomms7299 |
| [82] | Brasch, V. et al. Photonic chip–based optical frequency comb using soliton Cherenkov radiation. Science 351, 357-360 (2016). doi: 10.1126/science.aad4811 |
| [83] | Brasch, V. et al. Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state. Optics Express 24, 29312-29320 (2016). doi: 10.1364/OE.24.029312 |
| [84] | Guo, H. et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nature Physics 13, 94-102 (2017). doi: 10.1038/nphys3893 |
| [85] | Joshi, C. et al. Thermally controlled comb generation and soliton modelocking in microresonators. Optics Letters 41, 2565-2568 (2016). doi: 10.1364/OL.41.002565 |
| [86] | Yi, X. et al. Active capture and stabilization of temporal solitons in microresonators. Optics Letters 41, 2037-2040 (2016). doi: 10.1364/OL.41.002037 |
| [87] | Zhou, H. et al. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light:Science & Applications 8, 50 (2019). |
| [88] | Miao, R. L. et al. Repetition rate locked single-soliton microcomb generation via rapid frequency sweep and sideband thermal compensation. Photonics Research 10, 1859-1867 (2022). doi: 10.1364/PRJ.458472 |
| [89] | Shen, B. Q. et al. Integrated turnkey soliton microcombs. Nature 582, 365-369 (2020). doi: 10.1038/s41586-020-2358-x |
| [90] | Lihachev, G. et al. Low-noise frequency-agile photonic integrated lasers for coherent ranging. Nature Communications 13, 3522 (2022). doi: 10.1038/s41467-022-30911-6 |
| [91] | Gong, Z. et al. Photonic dissipation control for Kerr soliton generation in strongly Raman-active media. Physical Review Letters 125, 183901 (2020). doi: 10.1103/PhysRevLett.125.183901 |
| [92] | Huang, S. W. et al. Globally stable microresonator turing pattern formation for coherent high-power THz radiation on-chip. Physical Review X 7, 041002 (2017). |
| [93] | Vanholsbeeck, F., Emplit, P. & Coen, S. Complete experimental characterization of the influence of parametric four-wave mixing on stimulated Raman gain. Optics Letters 28, 1960-1962 (2003). doi: 10.1364/OL.28.001960 |
| [94] | Vanholsbeeck, F. et al. Numerical modeling of a four-wave-mixing-assisted Raman fiber laser. Optics Letters 29, 2719-2721 (2004). doi: 10.1364/OL.29.002719 |
| [95] | Vanholsbeeck, F. et al. Cascaded Raman generation in optical fibers: influence of chromatic dispersion and Rayleigh backscattering. Optics Letters 29, 998-1000 (2004). doi: 10.1364/OL.29.000998 |
| [96] | Sylvestre, T. et al. Raman-assisted parametric frequency conversion in a normally dispersive single-mode fiber. Optics Letters 24, 1561-1563 (1999). doi: 10.1364/OL.24.001561 |
| [97] | Okubo, S. et al. Offset-free optical frequency comb self-referencing with an f-2f interferometer. Optica 5, 188-192 (2018). doi: 10.1364/OPTICA.5.000188 |
| [98] | Brasch, V. et al. Self-referenced photonic chip soliton Kerr frequency comb. Light:Science & Applications 6, e16202 (2017). |
| [99] | Wang, Z. F. et al. Engineered octave frequency comb in integrated chalcogenide dual-ring microresonators. Frontiers in Photonics 4, 1066993 (2023). doi: 10.3389/fphot.2023.1066993 |
| [100] | Kim, S. et al. Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators. Nature Communications 8, 372 (2017). doi: 10.1038/s41467-017-00491-x |
| [101] | Moille, G. et al. Phased-locked two-color single soliton microcombs in dispersion-engineered Si3N4 resonators. Optics Letters 43, 2772-2775 (2018). doi: 10.1364/OL.43.002772 |
| [102] | Ji, H. L. et al. Design of Partially Etched GaP-OI Microresonators for Two-Color Kerr Soliton Generation at NIR and MIR. Proceedings of 2022 Asia Communications and Photonics Conference. Shenzhen, China: IEEE, 2022, 1622-1625. |
| [103] | Parra-Rivas, P. et al. Dynamics of localized and patterned structures in the Lugiato-Lefever equation determine the stability and shape of optical frequency combs. Physical Review A 89, 043813 (2014). doi: 10.1103/PhysRevA.89.043813 |
| [104] | Lugiato, L. A. et al. From the Lugiato–Lefever equation to microresonator-based soliton Kerr frequency combs. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences 376, 20180113 (2018). doi: 10.1098/rsta.2018.0113 |
| [105] | Chembo, Y. K. & Menyuk, C. R. Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators. Physical Review A 87, 053852 (2013). doi: 10.1103/PhysRevA.87.053852 |
| [106] | Balram, K. C. et al. Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits. Nature Photonics 10, 346-352 (2016). doi: 10.1038/nphoton.2016.46 |
| [107] | Sarabalis, C. J. et al. Acousto-optic modulation of a wavelength-scale waveguide. Optica 8, 477-483 (2021). doi: 10.1364/OPTICA.413401 |
| [108] | Savage, N. Acousto-optic devices. Nature Photonics 4, 728-729 (2010). doi: 10.1038/nphoton.2010.229 |
| [109] | Munk, D. et al. Surface acoustic wave photonic devices in silicon on insulator. Nature Communications 10, 4214 (2019). doi: 10.1038/s41467-019-12157-x |
| [110] | Balram, K. C. et al. Acousto-optic modulation and optoacoustic gating in piezo-optomechanical circuits. Physical Review Applied 7, 024008 (2017). doi: 10.1103/PhysRevApplied.7.024008 |
| [111] | Qi, Y. F. & Li, Y. Integrated lithium niobate photonics. Nanophotonics 9, 1287-1320 (2020). doi: 10.1515/nanoph-2020-0013 |
| [112] | Boes, A. et al. Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits. Laser & Photonics Reviews 12, 1700256 (2018). |
| [113] | Shin, H. et al. Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides. Nature communications 4, 1944 (2013). doi: 10.1038/ncomms2943 |
| [114] | Safavi-Naeini, A. H. et al. Controlling phonons and photons at the wavelength scale: integrated photonics meets integrated phononics. Optica 6, 213-232 (2019). doi: 10.1364/OPTICA.6.000213 |
| [115] | Song, J. C. et al. Stimulated Brillouin scattering in low-loss Ge25Sb10S65 chalcogenide waveguides. Journal of Lightwave Technology 39, 5048-5053 (2021). doi: 10.1109/JLT.2021.3078722 |
| [116] | Yang, Z. Q. et al. Efficient acousto-optic modulation using a microring resonator on a thin-film lithium niobate–chalcogenide hybrid platform. Optics Letters 47, 3808-3811 (2022). doi: 10.1364/OL.464482 |
| [117] | Hassanien, A. E. et al. Efficient and wideband acousto-optic modulation on thin-film lithium niobate for microwave-to-photonic conversion. Photonics Research 9, 1182-1190 (2021). doi: 10.1364/PRJ.421612 |
| [118] | Lin, H. T. et al. Chalcogenide glass-on-graphene photonics. Nature Photonics 11, 798-805 (2017). doi: 10.1038/s41566-017-0033-z |
| [119] | Song, J. C. et al. Ultrasound Measurement Using On-Chip Optical Micro-Resonators and Digital Optical Frequency Comb. Journal of Lightwave Technology 38, 5293-5301 (2020). doi: 10.1109/JLT.2020.2982211 |
| [120] | Cao, Z. F. et al. Investigation of the acousto‐optical properties of Ge–As–Te–(Se) chalcogenide glasses at 10.6 μm wavelength. Journal of the American Ceramic Society 104, 3224-3234 (2021). doi: 10.1111/jace.17767 |
| [121] | Cai, L. T. et al. Acousto-optical modulation of thin film lithium niobate waveguide devices. Photonics Research 7, 1003-1013 (2019). doi: 10.1364/PRJ.7.001003 |
| [122] | Khan, S. I. et al. Extraction of elastooptic coefficient of thin-film arsenic trisulfide using a Mach–Zehnder acoustooptic modulator on lithium niobate. Journal of Lightwave Technology 38, 2053-2059 (2020). doi: 10.1109/JLT.2019.2960396 |
| [123] | Shao, L. B. et al. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators. Optica 6, 1498-1505 (2019). doi: 10.1364/OPTICA.6.001498 |