[1] Tang, X. et al. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes. Nat. Photonics 13, 277–282 (2019). doi: 10.1038/s41566-019-0362-1
[2] Gu, Y. Y. et al. High-sensitivity imaging of time-domain near-infrared light transducer. Nat. Photonics 13, 525–531 (2019). doi: 10.1038/s41566-019-0437-z
[3] Tuong Ly, K. et al. Near-infrared organic light-emitting diodes with very high external quantum efficiency and radiance. Nat. Photonics 11, 63–68 (2017). doi: 10.1038/nphoton.2016.230
[4] Pan, Z. W. et al. Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates. Nat. Mater. 11, 58–63 (2011). doi: 10.1038/nmat3173
[5] Zeng, B. B. et al. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging. Light.: Sci. Appl. 7, 51 (2018). doi: 10.1038/s41377-018-0055-4
[6] Liang, Y. J. et al. New function of the Yb3+ ion as an efficient emitter of persistent luminescence in the short-wave infrared. Light.: Sci. Appl. 5, e16124 (2016). doi: 10.1038/lsa.2016.124
[7] Dincer, C. et al. Disposable sensors in diagnostics, food, and environmental monitoring. Adv. Mater. 31, 1806739 (2019). doi: 10.1002/adma.201806739
[8] Zampetti, A., Minotto, A. & Cacialli, F. Near-infrared (NIR) organic light-emitting diodes (OLEDs): challenges and opportunities. Adv. Funct. Mater. 29, 1807623 (2019). doi: 10.1002/adfm.201807623
[9] Tessler, N. et al. Efficient near-infrared polymer nanocrystal light-emitting diodes. Science 295, 1506–1508 (2002). doi: 10.1126/science.1068153
[10] Zhao, X. F. & Tan, Z. K. Large-area near-infrared perovskite light-emitting diodes. Nat. Photonics 14, 215–218 (2020). doi: 10.1038/s41566-019-0559-3
[11] Lukovic, M. et al. LED-based Vis-NIR spectrally tunable light source—the optimization algorithm. J. Eur. Optical Soc.-Rapid Publ. 12, 19 (2016). doi: 10.1186/s41476-016-0021-9
[12] Filippo, R., Taralli, E. & Rajteri, M. LEDs: sources and intrinsically bandwidth-limited detectors. Sensors 17, 1673 (2017). doi: 10.3390/s17071673
[13] Yao, Q. et al. YAG: Ce3+ transparent ceramic phosphors brighten the next-generation laser-driven lighting. Adv. Mater. https://doi.org/10.1002/adma.201907888 (2020).
[14] Liu, Y. F. et al. An excellent cyan-emitting orthosilicate phosphor for NUV-pumped white LED application. J. Mater. Chem. C. 5, 12365–12377 (2017). doi: 10.1039/C7TC04168C
[15] Liu, Y. F. et al. Ba9Lu2Si6O24:Ce3+: an efficient green phosphor with high thermal and radiation stability for solid-state lighting. Adv. Optical Mater. 3, 1096–1101 (2015). doi: 10.1002/adom.201500078
[16] Wei, Y. et al. New strategy for designing orangish-red-emitting phosphor via oxygen-vacancy-induced electronic localization. Light.: Sci. Appl. 8, 15 (2019). doi: 10.1038/s41377-019-0126-1
[17] Zhao, M. et al. Emerging ultra-narrow-band cyan-emitting phosphor for white LEDs with enhanced color rendition. Light; Sci. Appl. 8, 38 (2019). doi: 10.1038/s41377-019-0148-8
[18] Senden, T. et al. Quenching of the red Mn4+ luminescence in Mn4+-doped fluoride LED phosphors. Light.: Sci. Appl. 7, 8 (2018). doi: 10.1038/s41377-018-0013-1
[19] Dai, P. P. et al. A single Eu2+-activated high-color-rendering oxychloride white-light phosphor for white-light-emitting diodes. Light.: Sci. Appl. 5, e16024 (2016). doi: 10.1038/lsa.2016.24
[20] De Guzman, G. N. A. et al. Near-infrared phosphors and their full potential: a review on practical applications and future perspectives. J. Lumin. 219, 116944 (2020). doi: 10.1016/j.jlumin.2019.116944
[21] Du, J. R. & Poelman, D. Identifying near‐infrared persistent luminescence in Cr3+‐doped magnesium gallogermanates featuring afterglow emission at extremely low temperature. Adv. Optical Mater. 8, 1901848 (2020). doi: 10.1002/adom.201901848
[22] Lyu, T. S. & Dorenbos, P. Designing thermally stimulated 1.06 µm Nd3+ emission for the second bio-imaging window demonstrated by energy transfer from Bi3+ in La-, Gd-, Y-, and LuPO4. Chem. Eng. J. 372, 978–991 (2019). doi: 10.1016/j.cej.2019.04.125
[23] Song, E. H. et al. Heavy Mn2+ doped MgAl2O4 phosphor for high-efficient near-infrared light-emitting diode and the night-vision application. Adv. Optical Mater. 7, 1901105 (2019). doi: 10.1002/adom.201901105
[24] Qiao, J. W. et al. Divalent europium-doped near-infrared-emitting phosphor for light-emitting diodes. Nat. Commun. 10, 5267 (2019). doi: 10.1038/s41467-019-13293-0
[25] Zhao, F. Y. et al. Double perovskite Cs2AgInCl6:Cr3+: broadband and near-infrared luminescent materials. Inorg. Chem. Front. 6, 3621–3628 (2019). doi: 10.1039/C9QI00905A
[26] Wang, C. P. et al. An ultra-broadband near-infrared Cr3+-activated gallogermanate Mg3Ga2GeO8 phosphor as light sources for food analysis. ACS Appl. Electron. Mater. 1, 1046–1053 (2019). doi: 10.1021/acsaelm.9b00219
[27] Dai, D. J. et al. Broad band emission near-infrared material Mg3Ga2GeO8:Cr3+: substitution of Ga-In, structural modification, luminescence property and application for high efficiency LED. J. Alloy. Compd. 806, 926–938 (2019). doi: 10.1016/j.jallcom.2019.07.166
[28] Malysa, B., Meijerink, A. & Jüstel, T. Temperature dependent luminescence Cr3+-doped GdAl3(BO3)4 and YAl3(BO3)4. J. Lumin. 171, 246–253 (2016). doi: 10.1016/j.jlumin.2015.10.042
[29] Malysa, B. et al. On the influence of calcium substitution to the optical properties of Cr3+ doped SrSc2O4. J. Lumin. 190, 234–241 (2017). doi: 10.1016/j.jlumin.2017.05.030
[30] Malysa, B., Meijerink, A. & Jüstel, T. Temperature dependent photoluminescence of Cr3+ doped Sr8MgLa(PO4)7. Optical Mater. 85, 341–348 (2018). doi: 10.1016/j.optmat.2018.09.001
[31] Malysa, B., Meijerink, A. & Jüstel, T. Temperature dependent Cr3+ photoluminescence in garnets of the type X3Sc2Ga3O12 (X=Lu, Y, Gd, La). J. Lumin. 202, 523–531 (2018). doi: 10.1016/j.jlumin.2018.05.076
[32] Zeng, H. T. et al. Two-site occupation for exploring ultra-broadband near-infrared phosphor - double-perovskite La2MgZrO6:Cr3+. Chem. Mater. 31, 5245–5253 (2019). doi: 10.1021/acs.chemmater.9b01587
[33] Yu, D. C. et al. Non-rare-earth Na3AlF6:Cr3+ phosphors for far-red light-emitting diodes. ACS Appl. Electron. Mater. 1, 2325–2333 (2019). doi: 10.1021/acsaelm.9b00527
[34] Zhang, L. L. et al. Cr3+-doped broadband NIR garnet phosphor with enhanced luminescence and its application in NIR spectroscopy. Adv. Optical Mater. 7, 1900185 (2019). doi: 10.1002/adom.201900185
[35] Zhang, L. L. et al. A high efficiency broad-band near-infrared Ca2LuZr2Al3O12:Cr3+ garnet phosphor for blue LED chips. J. Mater. Chem. C. 6, 4967–4976 (2018). doi: 10.1039/C8TC01216D
[36] Shao, Q. Y. et al. Photoluminescence properties of a ScBO3:Cr3+ phosphor and its applications for broadband near-infrared LEDs. RSC Adv. 8, 12035–12042 (2018). doi: 10.1039/C8RA01084F
[37] Xu, X. X. et al. Highly efficient and thermally stable Cr3+-activated silicate phosphors for broadband near-infrared LED applications. Chem. Eng. J. 383, 123108 (2020). doi: 10.1016/j.cej.2019.123108
[38] Shao, Q. Y. et al. Broadband near-infrared light source derived from Cr3+-doped phosphors and a blue LED chip. Opt. Lett. 43, 5251–5254 (2018). doi: 10.1364/OL.43.005251
[39] Yao, L. Q. et al. Broadband emission of single-phase Ca3Sc2Si3O12:Cr3+/Ln3+ (Ln = Nd, Yb, Ce) phosphors for novel solid-state light sources with visible to near-infrared light output. Ceram. Int. 45, 14249–14255 (2019). doi: 10.1016/j.ceramint.2019.04.133
[40] Hayashi, D. et al. A broadband LED source in visible to short-wave-infrared wavelengths for spectral tumor diagnostics. Appl. Phys. Lett. 110, 233701 (2017). doi: 10.1063/1.4985015
[41] Huang, W. T. et al. Broadband Cr3+, Sn4+-doped oxide nanophosphors for infrared mini light-emitting diodes. Angew. Chem. Int. Ed. 58, 2069–2072 (2019). doi: 10.1002/anie.201813340
[42] Lee, C. et al. Chromium(Ⅲ)-doped fluoride phosphors with broadband infrared emission for light-emitting diodes. Inorg. Chem. 59, 376–385 (2020). doi: 10.1021/acs.inorgchem.9b02630
[43] Rajendran, V. et al. Super broadband near-infrared phosphors with high radiant flux as future light sources for spectroscopy applications. ACS Energy Lett. 3, 2679–2684 (2018). doi: 10.1021/acsenergylett.8b01643
[44] Rajendran, V. et al. Ultra-broadband phosphors converted near-infrared light emitting diode with efficient radiant power for spectroscopy applications. ACS Photonics 6, 3215–3224 (2019). doi: 10.1021/acsphotonics.9b01086
[45] Shimomura, Y. et al. Photoluminescence and crystal structure of green-emitting Ca3Sc2Si3O12:Ce3+ phosphor for white light emitting diodes. J. Electrochem. Soc. 154, J35–J38 (2007). doi: 10.1149/1.2388856
[46] Liu, Y. F. et al. Generation of broadband emission by incorporating N3− into Ca3Sc2Si3O12:Ce3+ garnet for high rendering white LEDs. J. Mater. Chem. 21, 6354–6358 (2011). doi: 10.1039/c0jm04404k
[47] Liu, Y. F. et al. Tunable full-color-emitting Ca3Sc2Si3O12:Ce3+, Mn2+ phosphor via charge compensation and energy transfer. Chem. Commun. 47, 10677–10679 (2011). doi: 10.1039/c1cc14324g
[48] Scierka, S. J. et al. Determination of the distribution of chromium oxidation states in reduced Cr/Al2O3 catalysts from XPS by factor analysis and curve fitting. Surf. Interface Anal. 20, 901–908 (1993). doi: 10.1002/sia.740201105
[49] Edgar, A. & Hutton, D. R. Exchange-coupled pairs of Cr3+ ions in emerald. J. Phys. C: Solid State Phys. 11, 5051–5063 (1978). doi: 10.1088/0022-3719/11/24/033
[50] Struve, B. & Huber, G. The effect of the crystal field strength on the optical spectra of Cr3+ in gallium garnet laser crystals. Appl. Phys. B 36, 195–201 (1985). doi: 10.1007/BF00704574