[1] Agio, M. & Alù, A. Optical Antennas (Cambridge University Press, Cambridge, 2013).
[2] Nie, S. M. & Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997). doi: 10.1126/science.275.5303.1102
[3] Koenderink, A. F. Single-photon nanoantennas. ACS Photonics 4, 710–722 (2017). doi: 10.1021/acsphotonics.7b00061
[4] Hugall, J. T., Singh, A. & van Hulst, N. F. Plasmonic cavity coupling. ACS Photonics 5, 43–53 (2018).
[5] Bitton, O., Gupta, S. N. & Haran, G. Quantum dot plasmonics: from weak to strong coupling. Nanophotonics 8, 559–575 (2019). doi: 10.1515/nanoph-2018-0218
[6] Szychowski, B., Pelton, M. & Daniel, M. C. Preparation and properties of plasmonic-excitonic nanoparticle assemblies. Nanophotonics 8, 517–547 (2019). doi: 10.1515/nanoph-2018-0168
[7] Aouani, H. et al. Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna. Nat. Nanotechnol. 9, 290–294 (2014). doi: 10.1038/nnano.2014.27
[8] Fang, Z. Y. et al. Graphene-antenna sandwich photodetector. Nano Lett. 12, 3808–3813 (2012). doi: 10.1021/nl301774e
[9] Britnell, L. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013). doi: 10.1126/science.1235547
[10] Tang, J. W. et al. Selective far-field addressing of coupled quantum dots in a plasmonic nanocavity. Nat. Commun. 9, 1705 (2018). doi: 10.1038/s41467-018-04077-z
[11] Brixner, T. et al. Nanoscopic ultrafast space-time-resolved spectroscopy. Phys. Rev. Lett. 95, 093901 (2005). doi: 10.1103/PhysRevLett.95.093901
[12] Frey, H. G. et al. High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip. Phys. Rev. Lett. 93, 200801 (2004). doi: 10.1103/PhysRevLett.93.200801
[13] Kühn, S. et al. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 97, 017402 (2006). doi: 10.1103/PhysRevLett.97.017402
[14] Punj, D. et al. A plasmonic 'antenna-in-box' platform for enhanced single-molecule analysis at micromolar concentrations. Nat. Nanotechnol. 8, 512–516 (2013). doi: 10.1038/nnano.2013.98
[15] Fernandez-Cuesta, I. et al. A nanochannel through a plasmonic antenna gap: an integrated device for single particle counting. Lab Chip 19, 2394–2403 (2019). doi: 10.1039/C9LC00186G
[16] Valev, V. K. et al. Plasmon-enhanced sub-wavelength laser ablation: plasmonic nanojets. Adv. Mater. 24, OP29–OP35 (2012). http://europepmc.org/abstract/MED/22228434
[17] Zhang, Y. P. et al. Nanoscale switching of near-infrared hot spots in plasmonic oligomers probed by two-photon absorption in photopolymers. ACS Photonics 5, 918–928 (2018). doi: 10.1021/acsphotonics.7b01164
[18] Juan, M. L., Righini, M. & Quidant, R. Plasmon nano-optical tweezers. Nat. Photonics 5, 349–356 (2011). doi: 10.1038/nphoton.2011.56
[19] Jensen, R. A. et al. Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures. ACS Photonics 3, 423–427 (2016). doi: 10.1021/acsphotonics.5b00575
[20] Haggui, M. et al. Spatial confinement of electromagnetic hot and cold spots in gold nanocubes. ACS Nano 6, 1299–1307 (2012). doi: 10.1021/nn2040389
[21] Sancho-Parramon, J. & Bosch, S. Dark modes and Fano resonances in plasmonic clusters excited by cylindrical vector beams. ACS Nano 6, 8415–8423 (2012). doi: 10.1021/nn303243p
[22] Hooshmand, N., Panikkanvalappil, S. R. & El-Sayed, M. A. Effects of the substrate refractive index, the exciting light propagation direction, and the relative cube orientation on the plasmonic coupling behavior of two silver nanocubes at different separations. J. Phys. Chem. C 120, 20896–20904 (2016). doi: 10.1021/acs.jpcc.6b02480
[23] Zito, G., Rusciano, G. & Sasso, A. Dark spots along slowly scaling chains of plasmonic nanoparticles. Opt. Express 24, 13584–13589 (2016). doi: 10.1364/OE.24.013584
[24] Li, Q. et al. Plasmon-assisted selective and super-resolving excitation of individual quantum emitters on a metal nanowire. Nano Lett. 18, 2009–2015 (2018). doi: 10.1021/acs.nanolett.7b05448
[25] Stockman, M. I., Faleev, S. V. & Bergman, D. J. Coherent control of femtosecond energy localization in nanosystems. Phys. Rev. Lett. 88, 067402 (2002). doi: 10.1103/PhysRevLett.88.067402
[26] Aeschlimann, M. et al. Spatiotemporal control of nanooptical excitations. Proc. Natl Acad. Sci. USA 107, 5329–5333 (2010). doi: 10.1073/pnas.0913556107
[27] Brinks, D. et al. Plasmonic antennas as design elements for coherent ultrafast nanophotonics. Proc. Natl Acad. Sci. USA 110, 18386–18390 (2013). doi: 10.1073/pnas.1308652110
[28] Piatkowski, L., Accanto, N. & van Hulst, N. F. Ultrafast meets ultrasmall: controlling nanoantennas and molecules. ACS Photonics 3, 1401–1414 (2016). doi: 10.1021/acsphotonics.6b00124
[29] Chen, X. W. et al. Ultrafast coherent nanoscopy. Mol. Phys. 111, 3003–3012 (2013). doi: 10.1080/00268976.2013.821537
[30] Aeschlimann, M. et al. Adaptive subwavelength control of nano-optical fields. Nature 446, 301–304 (2007). doi: 10.1038/nature05595
[31] Volpe, G. et al. Controlling the optical near field of nanoantennas with spatial phase-shaped beams. Nano Lett. 9, 3608–3611 (2009). doi: 10.1021/nl901821s
[32] Volpe, G., Molina-Terriza, G. & Quidant, R. Deterministic subwavelength control of light confinement in nanostructures. Phys. Rev. Lett. 105, 216802 (2010). doi: 10.1103/PhysRevLett.105.216802
[33] Devilez, A., Stout, B. & Bonod, N. Mode-balancing far-field control of light localization in nanoantennas. Phys. Rev. B 81, 245128 (2010). doi: 10.1103/PhysRevB.81.245128
[34] Jiang, L. Y. et al. In-plane coherent control of plasmon resonances for plasmonic switching and encoding. Light. Sci. Appl. 8, 21 (2019). doi: 10.1038/s41377-019-0134-1
[35] Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961). doi: 10.1103/PhysRev.124.1866
[36] Miroshnichenko, A. E., Flach, S. & Kivshar, Y. S. Fano resonances in nanoscale structures. Rev. Mod. Phys. 82, 2257–2298 (2010). doi: 10.1103/RevModPhys.82.2257
[37] Luk'yanchuk, B. et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707–715 (2010). doi: 10.1038/nmat2810
[38] Limonov, M. F. et al. Fano resonances in photonics. Nat. Photonics 11, 543–554 (2017). doi: 10.1038/nphoton.2017.142
[39] Rybin, M. V. et al. Fano resonances in antennas: general control over radiation patterns. Phys. Rev. B 88, 205106 (2013). doi: 10.1103/PhysRevB.88.205106
[40] Accanto, N. et al. Capturing the optical phase response of nanoantennas by coherent second-harmonic microscopy. Nano Lett. 14, 4078–4082 (2014). doi: 10.1021/nl501588r
[41] Wenger, J. et al. Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures. Opt. Express 16, 3008–3020 (2008). doi: 10.1364/OE.16.003008
[42] Aouani, H. et al. Colloidal quantum dots as probes of excitation field enhancement in photonic antennas. ACS Nano 4, 4571–4578 (2010). doi: 10.1021/nn1009209
[43] Cang, H. et al. Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging. Nature 469, 385–388 (2011). doi: 10.1038/nature09698
[44] Singh, A., Calbris, G. & van Hulst, N. F. Vectorial nanoscale mapping of optical antenna fields by single molecule dipoles. Nano Lett. 14, 4715–4723 (2014). doi: 10.1021/nl501819k
[45] Chen, Y. et al. Excitation enhancement of CdSe quantum dots by single metal nanoparticles. Appl. Phys. Lett. 93, 053106 (2008). doi: 10.1063/1.2956391
[46] Kobayashi, Y. et al. Direct coating of quantum dots with silica shell. J. Sol. Gel Sci. Technol. 55, 79–85 (2010). doi: 10.1007/s10971-010-2218-5
[47] Frantsuzov, P. et al. Universal emission intermittency in quantum dots, nanorods and nanowires. Nat. Phys. 4, 519–522 (2008). doi: 10.1038/nphys1001
[48] Ihara, T. & Kanemitsu, Y. Absorption cross-section spectrum of single CdSe/ZnS nanocrystals revealed through photoluminescence excitation spectroscopy. Phys. Rev. B 92, 155311 (2015). doi: 10.1103/PhysRevB.92.155311
[49] Htoon, H., Cox, P. J. & Klimov, V. I. Structure of excited-state transitions of individual semiconductor nanocrystals probed by photoluminescence excitation spectroscopy. Phys. Rev. Lett. 93, 187402 (2004). doi: 10.1103/PhysRevLett.93.187402
[50] Taminiau, T. H. et al. Optical antennas direct single-molecule emission. Nat. Photonics 2, 234–237 (2008). doi: 10.1038/nphoton.2008.32
[51] Curto, A. G. et al. Multipolar radiation of quantum emitters with nanowire optical antennas. Nat. Commun. 4, 1750 (2013). doi: 10.1038/ncomms2769
[52] Zhang, P., Ren, P. L. & Chen, X. W. On the emission pattern of nanoscopic emitters in planar anisotropic matrix and nanoantenna structures. Nanoscale 11, 11195–11201 (2019). doi: 10.1039/C9NR00235A
[53] Lalanne, P. et al. Light interaction with photonic and plasmonic resonances. Laser Photonics Rev. 12, 1700113 (2018). doi: 10.1002/lpor.201700113
[54] Xia, J. et al. Channel competition in emitter-plasmon coupling. Opt. Express 27, 30893–30908 (2019). doi: 10.1364/OE.27.030893
[55] Empedocles, S. A., Neuhauser, R. & Bawendi, M. G. Three-dimensional orientation measurements of symmetric single chromophores using polarization microscopy. Nature 399, 126–130 (1999). doi: 10.1038/20138
[56] Farahani, J. N. et al. Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. Phys. Rev. Lett. 95, 017402 (2005). doi: 10.1103/PhysRevLett.95.017402
[57] Aeschlimann, M. et al. Coherent two-dimensional nanoscopy. Science 333, 1723–1726 (2011). doi: 10.1126/science.1209206
[58] Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972). doi: 10.1103/PhysRevB.6.4370