[1] Ma, R. M., Oulton, R. F., Sorger, V. J. & Zhang, X. Plasmon lasers: coherent light source at molecular scales. Laser Photonics Rev. 7, 1-21 (2013). doi: 10.1002/lpor.201100040
[2] Oulton, R. F. Surface plasmon lasers: sources of nanoscopic light. Mater. Today 15, 26-34 (2012). doi: 10.1016/S1369-7021(12)70018-4
[3] Wang, D. Q., Wang, W. J., Knudson, M. P., Schatz, G. C. & Odom, T. W. Structural engineering in plasmon nanolasers. Chem. Rev. 118, 2865-2881 (2018). doi: 10.1021/acs.chemrev.7b00424
[4] Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193-204 (2010). doi: 10.1038/nmat2630
[5] Wang, X. Y. et al. Lasing enhanced surface plasmon resonance sensing. Nanophotonics 6, 472-478 (2017). doi: 10.1515/nanoph-2016-0006
[6] Ma, R. M., Ota, S., Li, Y., Yang, S. & Zhang, X. Explosives detection in a lasing plasmon nanocavity. Nat. Nanotechnol. 9, 600-604 (2014). doi: 10.1038/nnano.2014.135
[7] Fang, Y. R. & Sun, M. T. Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light.: Sci. Appl. 4, e2942 (2015).
[8] Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629-632 (2009). doi: 10.1038/nature08364
[9] Noginov, M. A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110-1112 (2009). doi: 10.1038/nature08318
[10] Ma, R. M., Oulton, R. F., Sorger, V. J., Bartal, G. & Zhang, X. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. Nat. Mater. 10, 110-113 (2011). doi: 10.1038/nmat2919
[11] Ramezani, M. et al. Plasmon-exciton-polariton lasing. Optica 4, 31-37 (2017). doi: 10.1364/OPTICA.4.000031
[12] Suh, J. Y. et al. Plasmonic bowtie nanolaser arrays. Nano. Lett. 12, 5769-5774 (2012). doi: 10.1021/nl303086r
[13] Wang, D. Q. et al. Stretchable nanolasing from hybrid quadrupole plasmons. Nano. Lett. 18, 4549-4555 (2018). doi: 10.1021/acs.nanolett.8b01774
[14] Molina, P. et al. Plasmon-assisted Nd3+-based solid-state nanolaser. Nano. Lett. 16, 895-899 (2016). doi: 10.1021/acs.nanolett.5b03656
[15] Hernández-Pinilla, D. et al. Multiline operation from a single plasmon-assisted laser. ACS Photonics 5, 406-412 (2018). doi: 10.1021/acsphotonics.7b00846
[16] Boulon, G. Why so deep research on Yb3+-doped optical inorganic materials? J. Alloy. Compd. 451, 1-11 (2008).
[17] Hemmer, E. et al. Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging. Nanoscale 5, 11339-11361 (2013). doi: 10.1039/c3nr02286b
[18] Deng, R. R. et al. Temporal full-colour tuning through non-steady-state upconversion. Nat. Nanotechnol. 10, 237-242 (2015). doi: 10.1038/nnano.2014.317
[19] Zhou, Z. P., Yin, B. & Michel, J. On-chip light sources for silicon photonics. Light.: Sci. Appl. 4, e358 (2015). doi: 10.1038/lsa.2015.131
[20] Tang, Y. N., Di, W. H., Zhai, X. S., Yang, R. Y. & Qin, W. P. NIR-responsive photocatalytic activity and mechanism of NaYF4:Yb, Tm@TiO2 core-shell nanoparticles. ACS Catal. 3, 405-412 (2013). doi: 10.1021/cs300808r
[21] Van der Ende, B. M., Aarts, L. & Meijerink, A. Near-infrared quantum cutting for photovoltaics. Adv. Mater. 21, 3073-3077 (2009). doi: 10.1002/adma.200802220
[22] Peña, A. et al. Yb3+spectroscopy in (Nb or Ta):RbTiOPO4 single crystals for laser applications. Opt. Express 15, 14580-14590 (2007). doi: 10.1364/OE.15.014580
[23] Royon, R., Lhermite, J., Sarger, L. & Cormier, E. High power, continuous-wave ytterbium-doped fiber laser tunable from 976 to 1120 nm. Opt. Express 21, 13818-13823 (2013). doi: 10.1364/OE.21.013818
[24] Hönninger, C. et al. Ultrafast ytterbium-doped bulk lasers and laser amplifiers. Appl. Phys. B 69, 3-17 (1999).
[25] Denker, B. & Shklovsky, E. Handbook of Solid-State Lasers: Materials, Systems and Applications. (Woodhead Publishing, Cambridge, 2013).
[26] Sánchez-García, L. et al. Anisotropic enhancement of Yb3+luminescence by disordered plasmonic networks self-assembled on RbTiOPO4 ferroelectric crystals. Nanoscale 9, 16166-16174 (2017). doi: 10.1039/C7NR03489J
[27] Pack, M. V., Armstrong, D. J. & Smith, A. V. Measurement of the X2 tensors of KTiOPO4, KTiOAsO4, RbTiOPO4, and RbTiOAsO4crystals. Appl. Opt. 43, 3319-3323 (2004). doi: 10.1364/AO.43.003319
[28] Sánchez-García, L. et al. Plasmonic enhancement of second harmonic generation from nonlinear RbTiOPO4 crystals by aggregates of silver nanostructures. Opt. Express 24, 8491-8500 (2016). doi: 10.1364/OE.24.008491
[29] Chen, Y. F., Chen, Y. S. & Tsai, S. W. Diode-pumped Q-switched laser with intracavity sum frequency mixing in periodically poled KTP. Appl. Phys. B 79, 207-210 (2004). doi: 10.1007/s00340-004-1537-z
[30] Zhang, S. L., Tan, Y. D. & Li, Y. Orthogonally polarized dual frequency lasers and applications in self-sensing metrology. Meas. Sci. Technol. 21, 054016 (2010). doi: 10.1088/0957-0233/21/5/054016
[31] Zhang, S. L. & Bosch, T. Orthogonally polarized lasers and their applications. Opt. Photonics News 18, 38-43 (2007).
[32] Thomas, P. A., Mayo, S. C. & Watts, B. E. Crystal structures of RbTiOAsO4, KTiO(P0.58, A0.42)O4, RbTiOPO4 and (Rb0.465, K0.535)TiOPO4, and analysis of pseudosymmetry in crystals of the KTiOPO4 family. Acta Cryst. B48, 401-407 (1992).
[33] Carvajal, J. J. et al. Broad emission band of Yb3+ in the nonlinear Nb:RbTiOPO4 crystal: origin and applications. Opt. Express 18, 7228-7242 (2010). doi: 10.1364/OE.18.007228
[34] Lupei, A., Lupei, V., Presura, C., Enaki, V. N. & Petraru, A. Electron-phonon coupling effects on Yb3+ spectra in several laser crystals. J. Phys: Condens Matter 11, 3769-3778 (1999). doi: 10.1088/0953-8984/11/18/312
[35] Seal, K. et al. Coexistence of localized and delocalized surface plasmon modes in percolating metal films. Phys. Rev. Lett. 97, 206103 (2006). doi: 10.1103/PhysRevLett.97.206103
[36] Damen, T. C., Porto, S. P. S. & Tell, B. Raman effect in zinc oxide. Phys. Rev. 142, 570-574 (1966). doi: 10.1103/PhysRev.142.570
[37] Carvajal, J. J. et al. Structural and optical properties of RbTiOPO4:Nb crystals. J. Phys: Condens Matter 19, 116214 (2007). doi: 10.1088/0953-8984/19/11/116214
[38] Carvajal, J. J. et al. Crystal growth of RbTiOPO4:Nb: a new nonlinear optical host for rare earth doping. Cryst. Growth Des. 1, 479-484 (2001). doi: 10.1021/cg015528+
[39] Palik, E. D. Handbook of Optical Constants of Solids. (Academic Press, San Diego, 1998).
[40] Guillien, Y. et al. Crystal growth and refined Sellmeier equations over the complete transparency range of RbTiOPO4. Opt. Mater. 22, 155-162 (2003). doi: 10.1016/S0925-3467(02)00359-2