[1] Cao, S. et al. A visible light-near-infrared dual-band smart window with internal energy storage. Joule 3, 1152–1162 (2019). doi: 10.1016/j.joule.2018.12.010
[2] Zhang, S. L. et al. Al3+ intercalation/de-intercalation-enabled dual-band electrochromic smart windows with a high optical modulation, quick response and long cycle life. Energy Environ. Sci. 11, 2884–2892 (2018). doi: 10.1039/C8EE01718B
[3] Li, H. Z. et al. Nanohybridization of molybdenum oxide with tungsten molybdenum oxide nanowires for solution-processed fully reversible switching of energy storing smart windows. Nano Energy 47, 130–139 (2018). doi: 10.1016/j.nanoen.2018.02.043
[4] Wang, Y. Y. et al. A multicolour bistable electronic shelf label based on intramolecular proton-coupled electron transfer. Nat. Mater. 18, 1335–1342 (2019). doi: 10.1038/s41563-019-0471-8
[5] Xu, T. et al. High-contrast and fast electrochromic switching enabled by plasmonics. Nat. Commun. 7, 10476 (2016). doi: 10.1038/ncomms10476
[6] Wade, C. R., Li, M. Y. & Dincǎ, M. Facile deposition of multicolored electrochromic metal-organic framework thin films. Angew. Chem. Int. Ed. 52, 13377–13381 (2013). doi: 10.1002/anie.201306162
[7] Wang, Z. et al. Towards full-colour tunability of inorganic electrochromic devices using ultracompact fabry-perot nanocavities. Nat. Commun. 11, 302 (2020). doi: 10.1038/s41467-019-14194-y
[8] Hopmann, E. & Elezzabi, A. Y. Plasmochromic nanocavity dynamic light color switching. Nano Lett. 20, 1876–1882 (2020). doi: 10.1021/acs.nanolett.9b05088
[9] Li, H. Z. et al. Rechargeable aqueous electrochromic batteries utilizing Ti-substituted tungsten molybdenum oxide based Zn2+ ion intercalation cathodes. Adv. Mater. 31, 1807065 (2019). doi: 10.1002/adma.201807065
[10] Zhang, S. L. et al. Dual-band electrochromic devices with a transparent conductive capacitive charge-balancing anode. ACS Appl. Mater. Interfaces 11, 48062–48070 (2019). doi: 10.1021/acsami.9b17678
[11] Cao, S. et al. Fluoride-assisted synthesis of plasmonic colloidal Ta-doped TiO2 nanocrystals for near-infrared and visible-light selective electrochromic modulation. Chem. Mater. 30, 4838–4846 (2018). doi: 10.1021/acs.chemmater.8b02196
[12] Scherer, M. R. J. et al. Enhanced electrochromism in gyroid-structured vanadium pentoxide. Adv. Mater. 24, 1217–1221 (2012). doi: 10.1002/adma.201104272
[13] Wei, D. et al. A nanostructured electrochromic supercapacitor. Nano Lett. 12, 1857–1862 (2012). doi: 10.1021/nl2042112
[14] Costa, C. et al. Electrochromic properties of inkjet printed vanadium oxide gel on flexible polyethylene terephthalate/indium tin oxide electrodes. ACS Appl. Mater. Interfaces 4, 5266–5275 (2012). doi: 10.1021/am301213b
[15] Zhao, G. F. et al. A multicolor electrochromic film based on a SnO2/V2O5 core/shell structure for adaptive camouflage. J. Mater. Chem. C. 7, 5702–5709 (2019). doi: 10.1039/C9TC01073D
[16] Li, H. Z., Firby, C. J. & Elezzabi, A. Y. Rechargeable aqueous hybrid Zn2+/Al3+ electrochromic batteries. Joule 3, 2268–2278 (2019). doi: 10.1016/j.joule.2019.06.021
[17] Li, H. Z. & Elezzabi, A. Y. Simultaneously enabling dynamic transparency control and electrical energy storage via electrochromism. Nanoscale Horiz. 5, 691–695 (2020). doi: 10.1039/C9NH00751B
[18] He, P. et al. Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv. Energy Mater. 8, 1702463 (2018). doi: 10.1002/aenm.201702463
[19] Mjejri, I. et al. Crystallized V2O5 as oxidized phase for unexpected multicolor electrochromism in V2O3 thick film. ACS Appl. Energy Mater. 1, 2721–2729 (2018). doi: 10.1021/acsaem.8b00386
[20] Zhang, W. et al. Electrochromic battery displays with energy retrieval functions using solution-processable colloidal vanadium oxide nanoparticles. Adv. Optical Mater. 8, 1901224 (2020). doi: 10.1002/adom.201901224
[21] Chen, R. et al. Sequential solution polymerization of poly(3, 4-ethylenedioxythiophene) using V2O5 as oxidant for flexible touch sensors. iScience 12, 66–75 (2019). doi: 10.1016/j.isci.2019.01.003
[22] Khim, D. et al. Simple bar-coating process for large-area, high-performance organic field-effect transistors and ambipolar complementary integrated circuits. Adv. Mater. 25, 4302–4308 (2013). doi: 10.1002/adma.201205330
[23] Margoni, M. M. et al. Hydrothermally grown nano and microstructured V2O5 thin films for electrochromic application. Appl. Surf. Sci. 449, 193–202 (2018). doi: 10.1016/j.apsusc.2018.01.288
[24] Wan, F. et al. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9, 1656 (2018). doi: 10.1038/s41467-018-04060-8
[25] Shazali, N. A. H. et al. Characterization and cellular internalization of spherical cellulose nanocrystals (CNC) into normal and cancerous fibroblasts. Materials 12, 3251 (2019). doi: 10.3390/ma12193251
[26] Onbattuvelli, V. P. et al. Structure and thermal stability of cellulose nanocrystal/polysulfone nanocomposites. Mater. Today Commun. 22, 100797 (2020). doi: 10.1016/j.mtcomm.2019.100797
[27] Jordan, J. H. et al. Extraction and characterization of nanocellulose crystals from cotton gin motes and cotton gin waste. Cellulose 26, 5959–5979 (2019). doi: 10.1007/s10570-019-02533-7
[28] Silversmit, G. et al. Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). J. Electron Spectrosc. Relat. Phenom. 135, 167–175 (2004). doi: 10.1016/j.elspec.2004.03.004
[29] Li, H. Z., McRae, L. & Elezzabi, A. Y. Solution-processed interfacial PEDOT: PSS assembly into porous tungsten molybdenum oxide nanocomposite films for electrochromic applications. ACS Appl. Mater. Interfaces 10, 10520–10527 (2018). doi: 10.1021/acsami.7b18310
[30] Kang, W. B. et al. Green synthesis of nanobelt-membrane hybrid structured vanadium oxide with high electrochromic contrast. J. Mater. Chem. C. 2, 4727–4732 (2014). doi: 10.1039/C4TC00158C
[31] Tong, Z. Q. et al. Annealing synthesis of coralline V2O5 nanorod architecture for multicolor energy-efficient electrochromic device. Sol. Energy Mater. Sol. Cells 146, 135–143 (2016). doi: 10.1016/j.solmat.2015.11.008
[32] Li, H. Z. et al. Solution-processed porous tungsten molybdenum oxide electrodes for energy storage smart windows. Adv. Mater. Technol. 2, 1700047 (2017). doi: 10.1002/admt.201700047
[33] Cai, G. F. et al. One-step fabrication of nanostructured NiO films from deep eutectic solvent with enhanced electrochromic performance. J. Mater. Chem. A 1, 4286–4292 (2013). doi: 10.1039/c3ta01055d
[34] Zhang, S. L. et al. Overcoming the technical challenges in Al anode-based electrochromic energy storage windows. Small Methods 4, 1900545 (2020). doi: 10.1002/smtd.201900545